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Abstract

In this thesis we develop a version of classical scissors congruence theory from the perspective of
algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent
if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion
to an abstract problem: given a set of objects and decomposition and congruence relations between
them, when are two objects in the set scissors congruent? By packaging the scissors congruence
information in a Waldhausen category we construct a spectrum whose homotopy groups include
information about the scissors congruence problem. We then turn our attention to generalizing
constructions from the classical case to these Waldhausen categories, and find constructions for
cofibers, suspensions, and products of scissors congruence problems.
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Chapter 1

Introduction

1.0.1 A quick introduction to scissors congruence

The classical question of scissors congruence concerns the subdivisions of polyhedra. Given a
polyhedron, when is it possible to dissect it into smaller polyhedra and rearrange the pieces into a
rectangular prism? Or, more generally, given two polyhedra when is it possible to dissect one and
rearrange it into the other?

In more modern language, we can express scissors congruence as a question about groups. Let
P(E3) be the free abelian group generated by polyhedra P , quotiented out by the two relations
[P ] = [Q] if P ∼= Q, and [P ∪ P ′] = [P ] + [P ′] if P ∩ P ′ has measure 0. Can we compute P(E3)?
Can we construct a full set of invariants on it? More generally, let X be En (Euclidean space), Sn,
or Hn (hyperbolic space). We define a simplex of X to be the convex hull of n + 1 points in X
(restricted to an open hemisphere if X = Sn), and a polytope of X to be a finite union of simplices.
Let G be any subgroup of the group of isometries of X. Then we can define a group P(X,G) to be
the free abelian group generated by polytopes P of X, modulo the two relations [P ] = [g · P ] for
any polytope P and g ∈ G, and [P ∪ P ′] = [P ] + [P ′] for any two polytopes P, P ′ such that P ∩ P ′
has measure 0. The goal of Hilbert’s third problem is to classify these groups.

Consider the example when X = En and Gn is the group of Euclidean isometries. We have a
homomorphism

P(En, Gn)⊗ P(Em, Gm) P(En+m, Gn+m)

given on generators by
[P ]⊗ [Q] [P ×Q],

where P ×Q is the subset of En×Em ∼= En+m which projects to P in En and Q in Em. Similarly,
for X = Sn and G = O(n) we can construct a homomorphism

P(Sn, O(n))⊗ P(Sm, O(m)) P(Sn+m+1, O(n+m+ 1))

in the following manner. Consider Sn to be embedded in Rn+1, and let P̃ be the solid cone gen-
erated by all points inside P ⊆ Sn. Then P̃ × Q̃ ⊆ Rn+1+m+1 is a solid cone in Rn+m+2, and
thus spans a polytope in Sn+m+1. We call this polytope P ∗ Q, as it can also be constructed
as the orthogonal join (inside Sn+m+1) of P and Q. Then the homomorphism P(Sn, O(n)) ⊗
P(Sm, O(m)) P(Sn+m+1, O(n+m+ 1)) given by [P ]⊗ [Q] [P ∗Q] is the desired homomor-
phism.

Letting P(E∞) =
⊕

n≥0 P(En, Gn) and P(S∞) = Z⊕
⊕

n≥0 P(Sn, O(n)) we see that the above
homomorphisms assemble into graded homomorphisms

P(E∞)⊗ P(E∞) P(E∞) and P(S∞)⊗ P(S∞) P(S∞).

9



In order for the grading to work properly we need to give P(Sn, O(n)) the grading n+ 1; the extra
Z we added on will have grading 0 and should be considered to be the scissors congruence group
of the empty polytope. (Note that P ∗ ∅ = ∅ ∗ P = P for all polytopes P .) It is easy to see that
these homomorphisms in fact give commutative ring structures on P(E∞) and P(S∞).

There is a fundamental difference between the scissors congruence groups of En and Sn, however.
En is not compact and thus we have no “everything” polytope, whereas Sn is compact and contains
itself as a polytope. If we think of polytopes of Sn as measuring solid angles, we may want to have
a scissors congruence group that has [Sn] = 0. Note, howver, that [Sn] = [S0 ∗Sn−1], so if we want
this canceling out to be ocnsistent with the ring structure on P(S∞) it suffices to quotient out by
the ideal generated by [S0].1 We will denote P(S∞)/([S0]) by P̃(S∞); we denote the n+ 1-graded
part of this by P̃(S∞)n. (This will be the image of P(Sn, O(n)) inside P̃(S∞).) There will be an
induced homomorphism P̃(S∞)⊗ P̃(S∞) P̃(S∞) which gives a commutative ring structure on
P̃(S∞).

Once we start thinking of P̃(S∞) as being a scissors congruence group that measures angles we
can construct another set of homomorphisms:

Dn,m : P(Sn, O(n)) P(Sm, O(m))⊗ P̃(S∞)n−m−1.

These homomorphisms are constructed in the following manner. Consider a simplex x in Sn; this is
the convex hull of n+ 1 points x0, . . . , xn ∈ Sn. For any subset I ⊆ {0, . . . , n} let xI = {xi | i ∈ I},
AI be the span of xI inside Rn+1, and

yI = {Proj(xj , A
⊥
I )/‖Proj(xj , A

⊥
I )‖ | j /∈ I},

where Proj(z,A) is the orthogonal projection of the point z (considered as a vector) into the
subspace A, and ‖z‖ is the length of the vector z. Note that the convex hull of xI is a simplex in
S|I|−1 nad that the convex hull of yI is a simplex in Sn−|I|. xI measures the “volume” of the face
spanned by the vertices in I, and yI measures the “angle” at that face. We can then define

Dn,m(x) =
∑

I⊆{0,...,n}
|I|=m+1

xI ⊗ yI ,

which extends to the desired homomorphism because simplices generate all polytopes. Note that
we need the second coordinate to be reduced because otherwise this is not well-defined up to
subdivision. The homomorphismsDn,m are called the generalized Dehn invariants, so called because
the homomorphism D3,1 is the Dehn invariant constructed to show that P(E3, G3) 6∼= R. (For more
details, see [18].) These assemble into a total Dehn invariant

D : P(S∞) P(S∞)⊗ P̃(S∞).

We can also reduce all of the P’s to get a comultiplication D : P̃(S∞) P̃(S∞)⊗P(S∞). In fact,
D makes P̃(S∞) into a Hopf algebra, and P(E∞) is a comodule over this Hopf algebra. In addition,
if we let P(Hn, O(n; 1)) be the scissors congruence group of n-dimensional hyperbolic space with
its group of isometries, we can construct analogous homomorphisms Dn,m : P(Hn) P(Hm) ⊗
P̃(S∞)n−m−1.

1In [18], Sah quotients out by the ideal generated by a point so that there is no torsion in the resulting ring. We
use S0 instead, here, as torsion will not be a problem for our future discussion.
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1.0.2 Connections to K-theory

The question of scissors congruence is highly reminiscent of a K-theoretic question. Algebraic
K-theory classifies projective modules according to their decompositions into smaller modules;
topological K-theory classifies vector bundles according to decompositions into smaller-dimensional
bundles. Thus it is reasonable to ask whether scissors congruence can also be expressed as a K-
theoretic question about polytopes being decomposed into smaller polytopes. As K-theory has a
different array of computational tools than group homology it is possible that this new perspective
would create new approaches for computing scissors congruence groups.

In addition, there are many seemingly-coincidental appearances of algebraic K-groups in the
theory of scissors congruence. In [5] Dupont and Sah construct the following short exact sequence,

0 (K3(C)indec)− P(H3) R⊗Z R/Z K2(C)− 0
D3,1

(where the negative superscripts indicate the −1-eigenspace of complex conjugation, and “indec”
indicates the indecomposable elements of K3). For a detailed exploration of the techniques that
lead to this result, see [4]. A more general result was obtained by Goncharov in [9], where he
constructs a morphism from certain subquotients of the scissors congruence groups of spherical
and hyperbolic space to certain subquotients of the Milnor K-theory of C. Both of these results,
however, are highly computational rather than conceptual; one goal of the current project is to find
a more conceptual basis for these results.

If we had spaces X and Y such that π3(X) = P(H3) and π3(Y ) = R ⊗Z R/Z we might see
the above short exact sequence as a fragment of the long exact sequence associated to a homotopy
fiber sequence F X Y . If, in addition, each of X and Y were the space associated to the
K-theory of some Waldhausen category and the map X Y were obtained as the map associated
to an exact functor, we would have the desired homotopy fiber sequence, and would be able to
extend the sequence to a long exact sequence. Thus our goal for this project is to construct a Dehn
invariant D3,1 between categories with an associated K-theory in such a way as to get the above
short exact sequence. In order to construct this Dehn invariant we need the following ingredients:

1. a construction of K-theory spaces for scissors congruence problems and morphisms between
them,

2. a construction for a quotient of a scissors congruence problem,

3. a construction for the tensor product of two scissors congruence problems, and

4. a construction of the Dehn invariant as a morphism between scissors congruence problems.

This thesis represents the first three of these steps.
In order to put scissors congruence into a K-theoretic framework we move away from the geom-

etry of the problem and create an algebraic formulation of what it means to decompose polytopes.
In his book [18], Sah defined a notion of “abstract scissors congruence”, an abstract set of axioms
that are sufficient to define a scissors congruence group. Inspired by this, we define a “polytope
complex” to be a category which contains enough information to encode scissors congruence in-
formation. We then use a modified Q-construction to construct a category which encodes the
movement of polytopes and which has a K-theory spectrum associated to it. We then prove that
K0 of this category is exactly P(X,G).

We start by defining an abstract object, which we call a polytope complex, which will encode the
information of a scissors congruence problem: which objects are isomorphic to which others, and
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what the allowed decompositions of objects are. The category of polytope complexes, PolyCpx,
comes equipped with a functor SC to the category of Waldhausen categories, such that the following
theorem holds:

Theorem 1.0.1. For any polytope complex C, K0SC(C) is the free abelian group generated by the
objects of C, module the two relations

[a] =
∑
i∈I

[ai] for any decomposition of a into the pieces {ai}i∈I

and

[a] = [b] for any isomorphic objects a and b.

For more details, see theorem 3.2.2. In particular, for the case of polytopes in a manifold X
and a subgroup G of isometries of X, our construction gives us a polytope complex CX,G such that
K0SC(CX,G) ∼= P(X,G) (see section 3.3.3).

The Waldhausen categories in the image of SC are constructed combinatorially, so are, on the
surface, quite simple. However, most of the standard analytical tools for algebraic K-theory are
not available for these categories, as the Waldhausen categories SC(C) do not come from an exact
category (in the sense of Quillen, [17]), do not have a cylinder functor (as in [23], section 1.6) and
are not good (in the sense of Toën, [21]). This means that very few computational techniques are
directly available for analyzing this problem, as most approaches covered in the literature depend
on one of these properties.

In order to construct a quotient of two scissors congruence problems we turn to a direct analysis
of the structure of Waldhausen’s S•-construction. It turns out that it is possible to duplicate this
construction directly on polytope complexes: given a polytope complex C we can find a polytope
complex snC such that |wSnSC(C)| ' |wSC(snC)|. We can make this construction compatible
with the simplicial structure maps from Waldhausen’s S•-construction, and therefore construct an
S•-construction directly on the polytope level.

However, as the S•-construction adds an extra simplicial dimension, it becomes necessary to be
able to define the K-theory of a simplicial polytope complex C•. (We consider a simplicial polytope
complex to be a simplicial object in the category of polytope complexes; see section 4.1 for more
details.) As the definition of K-theory relies on geometric realizations, we can define K(C•) to be
the spectrum defined by

K(C•)n = |wS• · · ·S•︸ ︷︷ ︸
n

SC(C•)|.

By analyzing the S•-construction on SC(C•) we obtain the following computation of the delooping
of the K-theory of C•:

Theorem 1.0.2. Let C• be a simplicial polytope complex. Let σC• be the simplicial polytope complex
given by the bar construction. More concretely, we define

(σC•)n = Cn ∨ Cn ∨ · · · ∨ Cn︸ ︷︷ ︸
n

,

with the simplicial structure maps defined in analogously to the usual bar construction. Then
ΩK(σC•) ' K(C•).

See section 4.4 and corollary 4.6.8 for more details. This allows us, among other things, to
construct polytope complex models for all spheres Sn for n ≥ 0.

12



The one computational tool for Waldhausen categories which does not depend in any way on
extra assumptions is Waldhausen’s cofiber theorem, which, given a functor G : E → E ′ between
Waldhausen categories constructs a simplicial Waldhausen category S•G whose K-theory is the
cofiber of the map K(G) : K(E)→ K(E ′). By passing this computation down through the polytope
complex construction of S• we find the following formula for the cofiber of a morphism of simplicial
polytope complexes.

Theorem 1.0.3. Let g : C• → D• be a morphism of simplicial polytope complexes. We define a
simplicial polytope complex (D/g)• by setting

(D/g)n = Dn ∨ Cn ∨ Cn ∨ · · · ∨ Cn︸ ︷︷ ︸
n

.

The simplicial structure maps are defined as for D• ∨ σC•, except that ∂0 is induced by the three
morphisms

∂0 : Dn → Dn−1 ∂0gn : Cn → Dn−1 1 : C∨n−1 → C∨n−1.

Then

K(C•)
K(g)−−−→ K(D•)→ K((D/g)•)

is a cofiber sequence of spectra.

See section 4.5 and corollary 4.6.8 for more details. As another corollary, we also get the
following result:

Proposition 1.0.4. Let X and Y be homogeneous geodesic n-manifolds with a preferred open cover
in which the geodesic connecting any two points in a single set is unique. If there exist preferred
open subsets U ⊆ X and V ⊆ Y and an isometry ϕ : U → V then the scissors congruence spectra
of X and Y are equivalent.

In order to construct a tensor product of scissors congruence problems we construct a symmetric
monoidal structure on the category of polytope complexes in such a way as to mirror the tensor
product on the K0-groups. This gives us the following proposition:

Proposition 1.0.5. There exists a functor ∧ : PolyCpx×PolyCpx PolyCpx that makes the
category of polytope complexes into a symmetric monoidal category. For all polytope complexes C
and D,

K0(C ∧ D) ∼= K0(C)⊗K0(D).

With respect to this structure, the functor K takes rings in PolyCpx to E∞-ring spectra.

In particular, by applying this to Euclidean or spherical scissors congruence, we can produce
ring structures on the spectra associated to these scissors congruence problems that specialize to
the ring structures on P(E∞) and P(S∞). This gives us the third ingredient of the Dehn invariant.
For more details, see section 5.2.
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Chapter 2

Preliminaries

2.1 Notation

We will often be talking about “vertical” and “horizotnal” morphisms: different, non-composable
category structures on the same set of objects. In a double category (or a polytope complex) we
will denote vertical morphism by dashed arrows A B and horizontal morphisms by solid arrows
A B. Note that “horizontal” morphisms are not necessarily drawn horizontally, and “vertical”
morphisms are not necessarily drawn vertically.

We will often be discussing commutative squares. Sometimes, in order to save space, we will
write

f, g : (A B) (C D)

instead of the commutative square

A B

C D

gf

Whenever we refer to an n-simplicial category we will always be referring to a functor (∆op)n Cat,
rather than an enriched category. In order to distinguish simplicial objects from non-simplicial ob-
jects, we will add a dot as a subscript to a simplicial object; thus C is a polytope complex, but C•
is a simplicial polytope complex. For any functor F we will write F (n) for the n-fold application of
F .

Lastly, the category Sp will refer to the category of symmetric spectra.

2.2 Categorical Preliminaries

2.2.1 Grothendieck Twists

Definition 2.2.1. Given a category D we define the contravariant functor

FD : FinSetop Cat by I DI .

The Grothendieck twist of D, written Tw(D), is defined to be a Grothendieck construction applied
to FD as follows. We let the objects of Tw(D) be pairs I ∈ FinSet, and x ∈ DI . A morphism
(I, x) (J, y) in Tw(D) will be a morphism I J ∈ FinSet, together with a morphism
y FD(f)(x) ∈ DI . We will often refer to the function I J as the set map of a morphism.
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Tw(D) is the Grothendieck construction (
∫
FinSetop F

op
D )op. More concretely, an object of Tw(D)

is a finite set I and a map of sets f : I obD; we will write an object of this form as {ai}i∈I , with
the understanding that ai = f(i). A morphism {ai}i∈I {bj}j∈J ∈ Tw(D) is a pair consisting of
a morphism of finite sets f : I J , together with morphisms Fi : ai bf(i) for all i ∈ I.

In general we will denote a morphism of Tw(D) by a lower-case letter. By an abuse of notation,
we will use the same letter to refer to the morphism’s set map, and the upper-case of that letter to
refer to the D-components of the morphism (as we did above). If a morphism f : {ai}i∈I {bj}j∈J
has its set map equal to the identity on I we will say that f is a pure D-map; if instead we have
Fi : ai bf(i) equal to the identity on ai for every i we will say that f is a pure set map.

If we consider an object {ai}i∈I of Tw(D) to be a formal sum
∑

i∈I ai then we see that Tw(D) is
the category of formal sums of objects in D. Then we have a monoid structure on the isomorphism
classes of objects of Tw(D) (with addition induced by the coproduct). In later sections we will
investigate the group completion of this monoid, but for now we will examine the structures which
are preserved by this construction.

Much of Tw(D)’s structure comes from “stacking” diagrams of D, so it stands to reason that
much of D’s structure would be preserved by this construction. The interesting consequence of
this “layering” effect is that even though we have added in formal coproducts, computations
with these coproducts can often be reduced to morphisms to singletons. Given any morphism
f : {ai}i∈I {bj}j∈J we can write it as

∐
j∈J

(
{ai}i∈f−1(j) {bj}

)
f |f−1(j)

Lemma 2.2.2. If D has all pullbacks then Tw(D) has all pullbacks. The pullback of the diagram

{ai}i∈I
f
{ck}k∈K

g
{bj}j∈J

is {ai ×ck bj}(i,j)∈I×KJ .

However, sometimes the categories we will be considering will not be closed under pullbacks. It
turns out, however, that if we are simply removing some objects which are “sources” then Tw(D)
will still be closed under pullbacks.

Lemma 2.2.3. Let C be a full subcategory of D which is equal to its essential image, and let D′ be
the full subcategory of D consisting of all objects not in C. Suppose that C has the property that for
any A ∈ C, if Hom(B,A) 6= ∅ then B ∈ C. Then if D has all pullbacks, so does Tw(D′).

Proof. Let U : Tw(D′) Tw(D) be the inclusion induced by the inclusion D′ D. We define a
projection functor P : Tw(D) Tw(D′) by P ({ai}i∈I) = {ai}i∈I′ , where I ′ = {i ∈ I | ai 6∈ C}.

Suppose that we are given a diagram A C ← B in Tw(D′). Let X be the pullback of
UA UC ← UB in Tw(D); we claim that PX is the pullback of A C ← B in Tw(D′).
Indeed, suppose we have a cone over our diagram with vertex D, then UD will factor through
X, and thus PUD = D will factor through PX. Checking that this factorization is unique is
trivial.

We finish up this section with a quick result about pushouts. It’s clear that Tw(D) has all
finite coproducts, since we compute it by simply taking disjoint unions of indexing sets. However,
it turns out that a lot more is true.
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Lemma 2.2.4. If D has all finite connected colimits then Tw(D) has all pushouts.

Proof. Consider a morphism f : {ai}i∈I {bj}j∈J ∈ Tw(D). We can factor f as a pure D-map
followed by a pure set map. Thus to show that Tw(D) contains all pushouts it suffices to show
that Tw(D) contains all pushouts along pure set maps and pure D-maps separately.

Now suppose that we are given a diagram

{ck}k∈K {ai}i∈I {bj}j∈J
g f

It suffices to show that the pushout exists whenever g is a pure set-map or a pure D-map. Suppose
that g is a pure set map. For x ∈ J ∪I K we will write Ix (resp. Jx, Kx) for those elements in I
(resp. J , K) which map to x under the pushout morphisms. The pushout of the above diagram in
this case will be {dx}x∈J∪IK , where dx is defined to be the colimit of the following diagram (if it
exists in D). The diagram will have objects ai, bj , ck for all i ∈ Ix, j ∈ Jx and k ∈ Kx. There will
be an identity morphism ai cg(i) and a morphism Fi : ai bf(i) for all i ∈ Ix. Note that this
colimit must be connected, since otherwise x wouldn’t be a single element in J ∪I K.

If g is a pure D-map the pushout of this diagram will be {dj}j∈J , where dj is defined to be the
colimit of the diagram

∐
i∈Ij

ci
∐
i∈Ij

ai bj Ij = f−1(j).

∐
i∈Ij Gi

∐
i∈Ij Fi

which exists as the diagram is connected. (Also, while we wrote the above diagrams using coprod-
ucts, they do not actually need to exist in D. In that case, we just expand the coproduct in the
diagram into its components to produce a diagram whose colimit exists in D.)

Remark. In order for D to contain all finite connected colimits it suffices for it to contain all pushouts
and all coequalizers. If D has all pushouts (but not necessarily all coequalizers) then examination
of the proof above shows that Tw(D) must be closed under all pushouts along morphisms with
injective set maps.

2.2.2 Double Categories

We will be using the notion of double categories originally introduced by Ehresmann in [6]; we
follow the conventions used by Fiore, Paoli and Pronk in [7].

Definition 2.2.5. A small double category C is a set of objects ob C together with two sets of
morphisms Homv(A,B) and Homh(A,B) for each pair of objects A,B ∈ ob C, which we will call
the vertical and horizontal morphisms. We will draw the vertical morphisms as dashed arrows,
and the horizontal morphisms as solid arrows. C with only the morphisms from the vertical (resp.
horizontal) set forms a category which will be denoted Cv (resp. Ch).

In addition, a double category contains the data of “commutative squares”, which are diagrams

A B

C D

σ

τ

p q
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which indicate that “qσ = τp”. Commutative squares have to satisfy certain composition laws,
which we omit here as they simply correspond to the intuition that they should behave just like
commutative squares in any ordinary category.

Given two small double categories C and D, a double functor F : C D is a pair of functors
Fv : Cv Dv and Fh : Ch Dh which takes commutative squares to commutative squares. We
will denote the category of small double categories by DblCat.

Remark. A small double category is an internal category object in Cat. We do not use this
definition here, however, since it obscures the inherent symmetry of a double category.

In general we will label vertical morphisms with Latin letters and horizontal morphisms with
Greek letters. We will also say that a diagram consisting of a mix of horizontal and vertical
morphisms commutes if any purely vertical (resp. horizontal) component commutes, and if all
components mixing the two types of maps consists of squares that commute in the double category
structure.

Now suppose that C is a small double category. We can define a double category Tw(C) by letting
ob Tw(C) = ob Tw(Ch) (which are the same as ob Tw(Cv) so there is no breaking of symmetry). We
define the vertical morphisms to be the morphisms of Tw(Cv) and the horizontal morphisms to be
the morphisms of Tw(Ch). In addition, we will say that a square

{ai}i∈I {bj}j∈J

{ck}k∈K {dl}l∈L

σ

p q

τ

commutes if for every i ∈ I the square

ai bσ(i)

cp(i) dτ(p(i))

Σi

Pi Qσ(i)

Tp(i)

commutes. It is easy to check that with this definition Tw(C) forms a double category as well, and
in fact that Tw is a functor DblCat DblCat.

2.2.3 Multicategories

Definition 2.2.6. A multicategory M is the following information:

1. a class of objects obM,

2. for each k ≥ 0 and each k+1-tuple of objectsA1, . . . , Ak, B ∈ obM, writtenM(A1, . . . , Ak;B),
called k-morphisms from (A1, . . . , Ak) to B,

3. for each k ≥ 0 and n1, . . . , nk ≥ 0 and objects Ai, A
(j)
i , B ∈ obM a function

M(A1, . . . , Ak;B)×
k∏
i=1

M(A
(i)
1 , . . . , A(i)

ni ;Ai) M(A
(1)
1 , . . . , A(k)

nk
;B)

called composition,
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4. for each A ∈ obM an identity element 1A ∈M(A;A), and

5. for each M(A1, . . . , Ak;B) and each σ ∈ Σk a “σ-action”

σ· : M(A1, . . . , Ak;B) M(Aσ(1), . . . , Aσ(k);B).

The composition and action of Σk must satisfy certain associativity and coherence axioms. Given
multicategoriesM andM′, a multifunctor F : M M′ is a function f : obM obM′ together
with a function

M(A1, . . . , Ak;B) M(f(A1), . . . , f(Ak); f(B))

for each k ≥ 0 and k + 1-tuple A1, . . . , Ak, B.

For more details on multicategories see, for example, [13], 2.1-2.2. (Note that what we term
multicategories he calls symmetric multicategories.)

Example 2.2.7. Any symmetric monoidal category (C,⊗, I) can be considered a multicategory by
defining

C(A1, . . . , Ak;B) = HomC(A1 ⊗ · · · ⊗Ak, B).

Given two symmetric monoidal categories (C,⊗, I) and (D,�, I ′) the multifunctors between C and
D are exactly the lax symmetric monoidal functors between C and D. (See, for example, [13]
example 2.1.10.)

2.3 Waldhausen K-theory

2.3.1 The K-theory of a Waldhausen category

This section contains a brief review of Waldhausen’s S• construction for K-theory, originally in-
troduced in [23], as well as some results which are surely well-known to experts, but for which we
could not find a reference.

Definition 2.3.1. A Waldhausen category is a small pointed category W, together with two
distinguished subcategories cW and wW. The morphisms in cW are called the cofibrations, and

the morphisms in wW are called the weak equivalences; these will be denoted and ∼ . The
category W satisfies the following extra conditions:

• the point in W is a zero object 0,

• both cW and wW contain all isomorphisms of W,

• the morphism 0 A is a cofibration for all A ∈ W,

• for any diagram C A B the pushout exists, and the induced morphism C C ∪A B
is a cofibration, and

• for any diagram

C A B

C ′ A′ B′

∼ ∼ ∼
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the induced morphism C ∪A B ∼ C ′ ∪A′ B′ is also a weak equivalence.

A functorW W ′ between Waldhausen categories is said to be exact if it preserves 0, cofibrations,
weak equivalences and pushouts. We denote the category of Waldhausen categories by WaldCat.

Given a Waldhausen category W, we define SnW to be the category of commutative triangles
defined as follows. An object A is a triangle of objects Aji for pairs 0 ≤ i < j ≤ n. The diagram
consists of cofibrations Aji A(j+1)i and morphisms Aji Aj(i+1) such that for every i < j < k
the diagram

Aji Aki Akj .

is a cofiber sequence. A morphism ϕ : A B consists of morphisms ϕji : Aij Bji making
the induced diagram commute. Note that S0W is the trivial category with one object and one
morphism, and S1W =W.

The SnW’s assemble into a simplicial object in categories by letting the k-th face map remove
all objects Aij with i = k or j = k + 1, and the k-th degeneracy repeat a row and column
appropriately. We can assemble the SnW’s into a simplicial Waldhausen category in the following
manner. A morphism ϕ : A B ∈ SnW is a weak equivalence if ϕij is a weak equivalence for all
i < j. ϕ is a cofibration if for all i < j the induced morphism

Bij ∪Aij A(i+1)j B(i+1)j

is a cofibration in W. Note that this means that in particular for all i < j the morphism ϕij is a
cofibration in W.

We obtain the K-theory spectrum of a Waldhausen category W by defining

K(E)n = Ω
∣∣∣wS(n)

• W
∣∣∣ .

From proposition 1.5.3 in [23] we know that above level 0 this will be an Ω-spectrum.
We now turn our attention to some tools for computing with Waldhausen categories. An exact

functor of Waldhausen categories F :W W ′, naturally yields a functor between S• constructions,
and therefore between the K-theory spectra. We are interested in several cases of such functors
which produce equivalences on the K-theory level.

The first example we consider will be simply an inclusion of a subcategory. While a Waldhausen
category can contain a lot of morphisms which are neither cofibrations nor weak equivalences, most
of these are not important. We will say that a Waldhausen subcategory W ′ of a Waldhausen
category W is a simplification of W if it contains all objects, weak equivalences, and cofibrations
of W.

Lemma 2.3.2. If W ′ is a simplification of W then the inclusion W ′ W induces the identity
map on K-theory.

Proof. This is true by simple observation of the definition of the K-theory of a Waldhausen category.
On a Waldhausen category, the S•-construction uses only cofibrations in the definitions of the
objects. As the cofibrations in S•W are in particular levelwise cofibrations, this means that for all
n ≥ 0, in S(n)

• W all morphisms in every diagram representing an object will be either cofibrations
or cofiber maps. Thus all of the objects of S(n)

• W will be objects of S(n)
• W ′.

In order to obtain the n-th space of K(W) we look at the geometric realization of wS(n)
• W.

Every k-simplex of this consists of a diagram, each of whose morphisms is either a cofibration,
cofiber map, or weak equivalence. We know that all weak equivalences of W are in W ′, and thus
every simplex of K(W)n is in K(W ′)n, which means that the natural inclusion is actually the
identity morphism, as desired.
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Note that there exists a minimal simplification of W, as given any family of simplifications
{Wα}α∈A, the category

⋂
α∈AWα will also be a simplification of W.

Now we consider pairs of adjoint functors between Waldhausen categories. Suppose that we have
an adjoint pair of exact functors F : W � W ′ :G; these produce a pair of maps K(F ) : K(W) �
K(W ′) : K(G). Generally an adjoint pair of functors produces a homotopy equivalence on the
classifying space level, so naively we might expect these to be inverse homotopy equivalences.
Unfortunately, in the S• construction we always restrict our attention to weak equivalences in the
category, so we need more information than just an adjoint pair of exact functors. If both the unit
and counit of our adjunction is a weak equivalence then we are fine, however, as the adjunction
must also restrict to an adjunction on the subcategories of weak equivalences. We call an adjoint
pair of exact functors satisfying this extra condition an exact adjoint pair, and we say that F is
exactly left adjoint to G. Given any exact adjoint pair we get a pair of inverse equivalences on the
K-theory level.

Lemma 2.3.3. An exact adjunction induces an adjoint pair of functors wF : wW � wW ′ : wG,
and for all n ≥ 0 the adjunction SnF : SnW � SnW ′ : SnG is also an exact adjunction.

In such a case we sometimes say that F is exactly adjoint to G. When such an adjunction is
an equivalence, we call it an exact equivalence. Note that any equivalence which is exact in both
directions is an exact equivalence, as all isomorphisms are weak equivalences.

Proof. As F and G are exact we know that wF and wG are well-defined. In order to see that they
are adjoint, note that the existence of a unit and counit are sufficient; as the unit and counit are
natural weak equivalences they pass to natural transformations inside wW and wW ′, and thus give
us the adjunction, as desired.

Now we need to show that an exact adjunction induces an exact adjunction on Sn. As an exact
functor passes to an exact functor on the Sn-level all that we must show is that the two functors
SnF and SnG will be adjoint. However, as both SnW and SnW ′ are diagram categories, with SnF
and SnG defined levelwise, the adjunction follows directly from the adjunction between F and G.
(The unit and counit will be defined levelwise. So we are done.

This lemma implies that for every n we get an induced pair of adjoint functors

wS(n)
n W � wS(n)

n W ′,

and thus a levelwise homotopy equivalence between the K-theory spectra. Thus we can conclude
the following corollary:

Corollary 2.3.4. An exact adjunction induces a homotopy equivalence between the K-theory spec-
tra of the Waldhausen categories.

Now suppose that W ′ is a subcategory of W with the property that any morphism f ∈ W can
be factored as hg, with h an isomorphism and g ∈ W ′, and such that W ′ contains the zero object
of W. Then W ′ is a Waldhausen category. Let ŜnW be the full subcategory of SnW containing
all objects in SnW ′. Then the following lemma shows that ŜnW is an equivalent Waldhausen
subcategory of SnW, and thus that for all n ≥ 1,∣∣∣wS(n−1)

• Ŝ•W
∣∣∣ ' ∣∣∣wS(n)

• W
∣∣∣ .
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Lemma 2.3.5. Suppose that W ′ is a subcategory of W with the property that given any morphism
f : A B in W, there exists a factorization f = hg where h is an isomorphism and g ∈ W ′. If
we let S̃nW be the full subcategory of SnW containing all those objects from SnW ′ then S̃nW is
exactly equivalent to SnW.

Note that W ′ automatically inherits a Waldhausen structure from W.

Proof. It suffices to show that every object of SnW will be isomorphic to an object from SnW ′.
The condition on W ′ ensures that W ′ contains all objects of W, as for any object A ∈ W if we
factor the identity morphism into hg as given in the statement, g ∈ W ′ which means that A ∈ W ′.

Note that it suffices to show that we can replace the longest row of cofibrations by cofibrations
in W ′, as any two objects of SnW which are equal on the first line are isomorphic. As W ′ is a
Waldhausen category, if we have an object of SnW with first row from SnW ′, we must have some
object in SnW ′ which is isomorphic to it. Thus it now remains to show that given a diagram

A1
ι1

A2
ι2 · · ·

ιn−1
An

in W there exists an isomorphism of diagrams to such a diagram in W ′.
We will show that given such a diagram where ι1, . . . , ιk−1 ∈ W ′ there exists an isomorphic

diagram where ι′1, . . . , ι
′
k are in W ′. The base case where k = 1 is obvious. Assuming that we have

the case for k − 1, factor ιk into g : Ak A′ and h : A′ Ak+1. The following diagram shows
that we have the case for k:

A1 · · · Ak A′ Ak+2 · · · An

A1 · · · Ak Ak+1 Ak+2 · · · An

ι1 ιk−1 g ιk+1h ιk+2 ιn−1

ι1 ιk−1 ιk ιk+1 ιk+2 ιn−1

h

So we are done.

We finish up this section with a short discussion of a simplification of the S• construction. Sn
can be defined more informally as the category whose objects are all choices of n − 1 composable
cofibrations, together with the choices of all cofibers. As the cofiber of a cofibration A B ∈ W
is a pushout, any object A ∈ SnW is defined, up to isomorphism, by the diagram

A11 A21 · · · An1,

and any morphism ϕ by its restriction to this row. We will denote the category of such objects
FnW. We can clearly make FnW into a Waldhausen category in a way analogous to the way we
made SnW into a Waldhausen category. However, these do not assemble easily into a simplicial
Waldhausen category, as ∂0, the 0-th face map, must take cofibers, and this is only defined up to
isomorphism. In order for these to assemble into a simplicial category we need, for every cofibration
A B a functorial choice of cofiber B/A in such a way that for any composition A B C
we have

(C/A)/(B/A) = C/B.

Then this choice of cofiber assembles the F•W into a well-defined simplicial category, and we can
compute the K-theory of W using the F• construction instead of the S• construction.
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2.3.2 K-Theory as a multifunctor

We want to show that K-theory is a symmetric monoidal functor WaldCat Sp; however,
as WaldCat is not a monoidal category this is clearly not possible. However, it turns out that
WaldCat can be given the structure of a multicategory in the following manner.

Definition 2.3.6. A functor F : W1 × · · · × Wk W is k-exact if it satisfies the following
conditions:

• For any 1 ≤ i ≤ k and any objects A1, . . . , Âi, . . . , Ak the functor

F (A1, . . . , ·, . . . , Ak) : Wi W

given by fixing the given k − 1 coordinates is exact.

• For any k cofibrations Ai A′i ∈ Wi and any subset S ⊆ {1, . . . , k} define the object
AS ∈ W1 × · · · ×Wk to have the i-th coordinate be Ai if i /∈ S and A′i if i ∈ S. Then for any
subset T ⊆ {1, . . . , k} the induced morphism

colim
S(T

F (AS) F (AT )

is a cofibration.

We define the k-morphisms of WaldCat to be exactly the k-exact functors; we have Σk act on
them by permuting the in-coordinates. For more details on this, see [2]. The goal of this section is
to prove the following proposition:

Proposition 2.3.7. The functor K : WaldCat Sp is a multifunctor.

In order to show that K is a multifunctor we need to show that any k-exact functor F : W1 ×
· · · × Wk W gives rise to a morphism K(W1) ∧ · · · ∧ K(Wk) K(W). In the interest of
simplifying the following analysis, we will restrict our attention to the case when k = 2; the other
cases follow analogously. The data of a 2-morphism is, for every pair m1,m2, a morphism of spaces

µm1,m2 : K(W1)m1 ∧K(W2)m2 K(W)m1+m2 .

These spaces need to be coherent with respect to the spectral structure maps; in particular, we
need the following diagram to commute:

K(W1)m1 ∧K(W2)m2 ∧ S1 K(W1)m1 ∧ S1 ∧K(W2)m2

K(W)m1+m2 ∧ S1 K(W1)m1 ∧K(W2)m2+1 K(W1)m1+1 ∧K(W2)m2

K(W)m1+m2+1 K(W)m1+1+m2

µm1,m2

µm1+1,m2µm1,m2+1

For a Waldhausen category W and 0 ≤ i ≤ n we define a functor ρni : W SnW, which is
defined on objects by

ρni(A)jk =

{
∗ if j ≤ n− i or k ≥ i,
A otherwise
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and extends in the analogous manner to morphisms. Let S1 be the pointed simplicial set which
at level n is equal to the set {0, 1, . . . , n}; we can also consider S1 to be a pointed category with
only trivial morphisms. Then we have a morphism of simplicial categories P : W × S1 S•W
(A, i) ρni(A).

Lemma 2.3.8. P a well-defined functor of simplicial categories.

Proof. In order for P to be well-defined we need to show that the image of P is in S•W, and that
P is coherent with the simplicial maps. The first part of this is obvious, since ρni is constructed to
be a valid element of SnW. For the second part, note that we have

∂jρni(A) =


ρ(n−1)0(A) if j = 0 and i = n or j = n and i = 1,

ρ(n−1)i(A) if j ≤ n− i and i 6= n

ρ(n−1)(i−1)(A) if j > n− i
(2.1)

= ρ(n−1)(∂j(i))(A), (2.2)

where in the right-hand side of the above, i ∈ S1
n. Analogously,

sjρni(A) =

{
ρ(n+1)i if j ≤ n− i
ρ(n+1)(i+1) if j > n− i

= ρ(n−1)(sj(i))(A),

so we are done

We thus have functors
P : S(m)

• W × S1 S(m+1)
• W.

Note that by definition, if either i = 0 or A = ∗ P (A, i) = ∗, so P lifts to a map

P : NwS(m)
• W ∧ S1 NwS(m+1)

• W.

This is the spectral structure map of the K-theory of a symmetric spectrum.
Now consider a biexact functor F : W1 × W2 W. We want to use F to construct mor-

phisms µm1,m2 : K(W1)m1 ∧K(W2)m2 K(W)m1+m2 . To do this, we will first reexamine the S•

construction to make it easier to analyze.
Let [n] be the ordered set 0 < 1 < · · · < n, considered as a pointed category (with 0 as the

distinguished basepoint), and let Ar [n] be the arrow category of [n]; we will denote an object in
Ar [n] as j < i. For a vector ~n = (n1, . . . , nm) we will write [~n] = [n1]× · · · × [nm]. We can think of
an object of SnW as a functor X : Ar [n] W satisfying the extra conditions that X(i = i) = ∗
for all i, X(i < j) X(i < k) is a cofibration for all i < j < k and any commutative square

X(i < j) X(i < k)

X(j = j) X(j < k)

is a pushout square; from this perspective, SnW is a full subcategory of the category of functors
Ar [n] W. From this perspective, the simplicial structure on S•W is induced from the simplicial
structure on [Ar •,W]. More generally, Sn1 · · ·SnmW is naturally a full subcategory of the category
of functors

X : Ar ([n1]× · · · × [nm]) W,
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satisfying conditions analogous to the condition above. (See [2], section 2, for more details.) The
key fact we need about the objects of Sn1 · · ·SnmW is that they will be preserved by biexact functors
in the following manner. Consider the composition

S
(m1)
~n1
W1 × S(m2)

~n2
W2

[
Ar [~n1],W1

]
×
[
Ar [~n2],W2

][
Ar ([~n1]× [~n2]),W2 ×W2

] F◦ [
Ar ([~n1]× [~n2]),W

]
.

The key extra condition on the objects of S
(m1+m2)
~n1~n2

W is that this functor lands in S
(m1+m2)
~n1~n2

W. By
varying the coordinates of ~n1 and ~n2 these assemble into exact functors

S(m1)
• W1]× S(m2)

• W2 S(m1+m2)
• W.

Applying |Nw · | to these and noting that any point with the basepoint as one of the coordinates
gets mapped to the basepoint, we get maps

µm1,m2 : K(W1)m1 ∧K(W2)m2 K(W)m1+m2 ,

as desired.
In order to check these assemble into a map K(W1)∧K(W2) K(W) we that these satisfy the

coherence conditions stated earlier. In order to show this, we will show that the following diagram
commutes:

S(m1)
• W1 × S(m2)

• W2 × S1 S(m1)
• W1 × S1 × S(m2)

• W2

S(m1+m2)
• W × S1 S(m1)

• W1 × S(m2+1)
• W2 S(m1+1)

• W1 × S(m2)
• W2

S(m1+m2+1)
• W S(m1+1+m2)

• W

F
1× P P × 1

P
FF

In fact, all of the morphisms except for the two horizontal morphisms are obtained by postcomposing
functors Ar ([~n1] × [~n2]) sCat with P or F . The horizontal morphisms, on the other hand,
permute both source and target categories, and then permute the source categories back; everything
in between is, once again, postcomposing with P or F . Thus in order for this diagram to commute
it suffices to show that the diagram

W1 ×W2 × S1 W1 × S1 ×W2

W × S1 W1 × S•W2 S•W1 ×W2

S•W

F × 1
1× P P × 1

P
F

F

commutes. Consider a triple (A1, A2, i) ∈ W1 ×W2 × S1
n. To check that the diagram commutes,

we need to show that

ρni(F (A1, A2)) = F (A1, ρni(A2)) = F (ρni(A1), A2).
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Looking at each of these at spot jk we have that if j ≤ n− i or k ≥ i, the first is ∗, the second is
F (A1, ∗) and the third is F (∗, A2), which are all equal because F is biexact. Otherwise, these are
all equal to F (A1, A2), so are again all equal. So these diagrams commute on objects. Analogously,
they commute on all morphisms.

This completes the proof of proposition 2.3.7.
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Chapter 3

Scissors congruence spectra

3.1 Abstract Scissors Congruence

In this section we will deal with scissors congruence of abstract objects.

Definition 3.1.1. A polytope complex is a double category C satisfying the following properties:

(V) Vertically, C is a preorder which has a unique initial object and is closed under pullbacks. In
addition, C has a Grothendieck topology.

(H) Horizontally, C is a groupoid.

(P) For any pair of morphisms P : B′ B and Σ: A B, where P is vertical and Σ horizontal,
there exists a unique commutative square

Σ∗B′ B′

A B

Σ∗P P

Σ

wheich we will call a mixed pullback. The functor Σ∗ : (Cv ↓ B) (Cv ↓ A) is an equivalence
of categories.

(C) If {Xα X}α∈A is a set of vertical morphisms which is a covering family of X, and
Σ: Y X is any horizontal morphism, then {Σ∗Xα Y }α∈A is a covering family of
Y .

(E) If {Xα X}α∈A is a covering family such that for some α0 ∈ A we have Xα = ∅, then the
family {Xα X}α 6=α0 is also a covering family.

A polytope is a non-initial object of C. The full double subcategory of polytopes of C will be
denoted Cp. We will say that two polytopes a, b ∈ C are disjoint if there exists an object c ∈ C with
vertical morphisms a c and b c such that the pullback a×c b is the vertically initial object.

The main motivating example that we will refer to for intuition will be the example of Euclidean
scissors congruence. Let the polytopes of C be polygons in the Euclidean plane, where we define
a polygon to be a finite union of nondegenerate triangles. We define the vertical morphisms of C
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to be set inclusions (where we formally add in the empty set to be the vertically initial object).
The topology on Cv will be the usual topology induced by unions; concretely, {Pα P}α∈A
will be a cover if

⋃
α∈A Pα = P . We define the set of horizontal morphisms P Q to be

{g ∈ E(2) | g · P = Q}.
Then axiom (V) simply says that the intersection of two polygons is either another polygon

or else has measure 0 (and therefore we define it to be the empty set). Axiom (H) is simply the
statement that E(2) is a group. Axiom (P) says that if we have polygons P and Q and a Euclidean
transformation g that takes P to Q, then any polygon sitting inside P is taken to a unique polygon
inside Q. Axiom (C) says that Euclidean transformations preserve unions. Axiom (B) says that if
you have a set of polygons {Pα}α∈A and sets {Pαβ}β∈Bα such that⋃

β∈Bα

Pαβ = Pα and
⋃
α∈A

⋃
β∈Bα

Pαβ = P

then we must have originally had P =
⋃
α∈A Pα = P .

In order to define scissors congruence groups we want to look at the formal sums of polygons, and
quotient out by the relations that [P ] = [Q] if P ∼= Q, and if we have a finite set of polygons {Pi}i∈I
which intersect only on the boundaries that cover P then [P ] =

∑
i∈I [Pi]. Using a Grothendieck

twist we can construct a category whose objects are exactly formal sums of polygons, and whose
isomorphism classes will naturally quotient out the first of these relations. Thus we can now draw
our attention to the second relation, which concerns ways of including smaller polygons into larger
ones. In the language of polytope complexes, we want to understand the vertical structure of
Tw(C).

We start with some results about how to move vertical information along horizontal morphisms.
C has the property that “pullbacks exist”, namely that if we have the lower-right corner of a
commutative square consisting of a vertical and a horizontal morphism then we can complete it
to a commutative square in a suitably universal fashion. It turns out that Tw(Cp) has the same
property.

Lemma 3.1.2. Given any diagram

A B B′
σ q

in Tw(Cp), let (Tw(Cp) ↓ (A,B′)) be the category whose objects are commutative squares

A′ B′

A B

τ

p q

σ

and whose morphisms are commutative diagrams

A′1

A B′

A′2

p1

r

p2

τ1

τ2
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Then (Tw(Cp) ↓ (A,B′)) has a terminal object.

We will refer to this terminal object as the pullback of the diagram, and the square that it fits
into a pullback square. We denote this terminal object by σ∗B′, and call the vertical morphism
σ∗q : σ∗B′ A and the horizontal morphism σ̃ : σ∗B′ B′. Note that if σ (resp. q) is an
isomorphism, then so is σ̃ (resp. σ∗q).

Proof. Let A′ = {Σ∗i b′j′}(i,j′)∈I×JJ ′ . We also define morphisms τ : A′ B′ by the set map π2 : I×J
J ′ J ′ and the horizontal morphisms Σi : Σ∗i b

′
j′ b′j′ and p : A′ A by the set map π1 : I ×J

J ′ I and the vertical morphisms Σ∗i (b
′
j′ bq(j)). Then these complete the original diagram to

a commutative square by definition; the fact that it is terminal is simple to check.

Our second relation between polygons had the condition that we needed polygons to be disjoint,
so we restrict our attention to vertical morphisms which have only disjoint polygons in each “layer.”

Definition 3.1.3. Given a vertical morphism p : {ai}i∈I {bj}j∈J ∈ Tw(Cp)v we say that p is a
sub-map if for every j ∈ J and any two distinct i, i′ ∈ p−1(j) we have ai ×bj ai′ = ∅ in Cv. We will

say that a sub-map p is a covering sub-map if for every j ∈ J the sets {ai bj}i∈p−1(j) are covers
according to the topology on Cv.

We will denote the subcategory of sub-maps by Tw(Cp)Sub
v .

In the polygon example, a sub-map is simply the inclusion of several polygons which have
measure-0 intersection into a larger polygon. A covering sub-map is such an inclusion which is in
fact a tiling of the larger polygon. For example:

covering sub-map sub-map

From this point onwards in the text all vertical morphisms of Tw(Cp) will be sub-maps. If
a sub-map is in fact a covering sub-map we will denote it by A B. We will also refer to
horizontal morphisms as shuffles for simplicity. From lemma 2.2.3 we know that Tw(Cp)v has all
pullbacks, and it is easy to see that the pullback of a sub-map will also be a sub-map. From axiom
(B) we know that if {Xα X}α∈A is a covering family and Xα0 = ∅ for an α0 ∈ A, then the
family {Xα X}α∈A\{α0} is also a covering family. Thus the pullback of a covering sub-map

will be another covering sub-map, which means that not only is Tw(Cp)Sub
v a category which has

all pullbacks, but in fact the Grothendieck topology on Cv induces a Grothendieck topology on
Tw(Cp)v. It turns out that the pullback functor defined above acts continuously with respect to
this topology.

Lemma 3.1.4. Let σ : A B be a shuffle.

1. We have a functor σ∗ : (Tw(Cp)Sub
v ↓ B) (Tw(Cp)Sub

v ↓ A) given by pulling back along σ.
This functor preserves covering sub-maps.
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2. σ∗ has a right adjoint σ∗ which also preserves covering sub-maps. If σ has an injective set
map (in the sense of definition 2.2.1) then σ∗σ∗ ∼= 1; if σ has a surjective set map then
σ∗σ

∗ ∼= 1.

Intuitively speaking, σ∗ looks at how each polytope in the image is decomposed and decomposes
its preimages accordingly. σ∗ figures out what the minimal subdivision of the image that pulls back
to a refinement of the domain is. In our polygon example, we have the following:

σ

q

σ′

σ∗q

pulling back q along σ

σ

σ∗pp

pushing forward p along σ

Proof.

1. From lemma 3.1.2 we know that σ∗ is a functor (Tw(Cp)Sub
v ↓ B) (Tw(Cp)v ↓ A), so

it remains to show that σ∗ maps sub-maps to sub-maps. This follows from the explicit
computation of σ∗ in the proof of lemma 3.1.2 and axiom (P) which gives us that pulling
back along a horizontal morphism in C preserves pullbacks. The fact that σ∗ preserves covers
is true by axiom (C).

2. We will show that σ∗ has a right adjoint by showing that the comma category (σ∗ ↓ A′)
has a terminal object. We will write A = {ai}i∈I , A′ = {a′i′}i′∈I′ , etc. In addition, for any
vertical morphism f : Y = {yw}w∈W {zx}x∈X we will use the notation Yx for the object
{yw}w∈f−1(x).

Suppose that we have a sub-map q : B′ B such that the pullback σ∗q factors through A′.
For all i ∈ I we have horizontal morphisms Σ−1

i : bσ(i) ai, so by the definition of pullback

we have sub-maps B′σ(i) (Σ−1
i )∗A′i and thus we must have a sub-map

B′σ(i)

∏
i∈σ−1(j)

(Σ−1
i )∗A′i.

(As vertically we are in a preorder, products and pullbacks are the same when they exist; we
are omitting the object that we take the pullback over for conciseness of notation.) Thus the
object

X =
∐
j∈J

 ∏
i∈σ−1(j)

(Σ−1
i )∗A′i


is clearly terminal in (σ∗ ↓ A′), and if A′ A was a cover, then X B will also be
one. (Note that if σ−1(j) = ∅ then the product becomes {bj}, as all of these products are in
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the category of objects with sub-map to B.) If σ had an injective set map then σ−1(j) has
size either 0 or 1 we must have σ∗σ∗ = 1. If σ has a surjective set map then by definition
A′i = Σ∗iBj for i ∈ σ−1(j) and all j ∈ J will be represented, and so in fact X ∼= B′ and
σ∗σ

∗ ∼= 1.

We wrap up this section by defining the category of polytope complexes.

Definition 3.1.5. Let C and D be two polytope complexes. A double functor F : C D is called
a polytope functor if it satisfies the two additional conditions

(FC) the vertical component Fv : Cv Dv is continuous and preserves pullbacks and the initial
object, and

(FP) for any pair of morphisms P : B′ B and Σ: A B, where P is vertical and Σ horizontal,
we have F (Σ∗P ) = F (Σ)∗F (P ). (In other words, F preserves mixed pullbacks.)

We denote the category of polytope complexes and polytope functors by PolyCpx.

3.2 Waldhausen Category Structure

Now that we have developed some machinery for looking at formal sums of polygons we can start
constructing the group completion of our category Tw(Cp). Our cofibrations will be inclusions of
polygons which lose no information. Our weak equivalences will be the horizontal isomorphisms,
together with vertical covering sub-maps (which will quotient out by both of the relations we are
interested in). Since we now want to be able to mix sub-maps and shuffles we define our Waldhausen
category by applying a sort of Q-construction to the double category Tw(Cp).

Definition 3.2.1. The category SC(C) is defined to have ob SC(C) = ob (Tw(Cp)). The morphisms
of SC(C) are equivalence classes of diagrams in Tw(Cp)

A A′ B
p

where two diagrams are considered equivalent if there is a vertical isomorphism ι : A′1 A′2 ∈
Tw(Cp)v which makes the following diagram commute:

A′1

A B

A′2

p1

p2

ι

σ1

σ2

We will generally refer to a morphism as a pure sub-map (resp. pure shuffle) if in some representing
diagram the shuffle (resp. sub-map) component is the identity.

We say that a morphism A
p
A′

σ
B is a

cofibration if p is a covering sub-map and σ has an injective set map, and a

weak equivalence if p is a covering sub-map and σ has a bijective set map.
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The composition of two morphisms f : A B and g : B C represented by

A
p

A′
σ

B and B
q

B′
τ

C

is defined to be the morphism represented by the sub-map p ◦ σ∗q and the shuffle τ ◦ σ̃.

Our goal is to prove the following theorem, which states that this structure gives us exactly the
scissors congruence groups we were looking for.

Theorem 3.2.2. SC is a functor PolyCpx WaldCat. Every Waldhausen category in the
image of SC satisfies the Extension axiom, and has a canonical splitting for every cofibration se-
quence. In addition, for any polytope complex C, K0SC(C) is the free abelian group generated by
the polytopes of C modulo the two relations

[a] =
∑
i∈I

[ai] for covering sub-maps {ai}i∈I {a}

and

[a] = [b] for horizontal morphisms a b ∈ C.

We will defer most of the proof of this theorem until the last section of the paper, as it is
largely technical and not very illuminating. Assuming the first part of the theorem, however, we
will perform the computation of K0 here.

Proof. In a small Waldhausen category E where every cofibration sequence splits, K0 is the free
abelian group generated by the objects of E under the relations that [A q B] = [A] + [B] for all

A,B ∈ E , and [A] = [B] if there is a weak equivalence A
∼
B.

In SC(C) an object {ai}i∈I is isomorphic to
∐
i∈I{ai}, so K0SC(C) is in fact generated by all

polytopes of C. Now consider any weak equivalence f : A
∼
B ∈ SC(C). We can write this weak

equivalence as a pure covering sub-map followed by a pure shuffle with bijective set map (which
will be an isomorphism of SC(C)). Any isomorphism of SC(C) is a coproduct of isomorphisms
between singleton objects; any isomorphism between singletons is simply a horizontal morphism
of C. Any pure covering sub-map is a coproduct of covering sub-maps of singletons. Thus the
weak equivalences generate exactly the relations given in the statement of the theorem, and we are
done.

3.3 Examples

3.3.1 The Sphere Spectrum

Consider the double category S with two objects, ∅ and ∗. We have one vertical morphism ∅ ∗
and no other non-identity morphisms. There are no nontrivial covers. Then S is clearly a polytope
complex.

Tw(S) will be the category of pointed finite sets, where the cofibrations are the injective maps
and the weak equivalences are the isomorphisms. By direct computation and the Barratt-Priddy-
Quillen theorem ([1]) we see that K(SC(S)) is equivalent to the sphere spectrum (which justifies
our notation).
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3.3.2 G-analogs of Spheres

Consider the double category SG with two objects, ∅ and ∗. We have one vertical morphism ∅ ∗.
In addition, Auth(∗) = G. This is clearly a polytope complex.

The objects of SC(SG) are the finite sets. As all weak equivalences are isomorphisms (and thus
all cofibration sequences split exactly) we can compute the K-theory of SC(SG) by considering
ΩBB(iso SC(SG)). The automorphism group of a set {1, 2, . . . , n} is the group G o Σn, whose
underlying set is Σn ×Gn, and where

(σ, (g1, . . . , gn)) · (σ′, (g′1, . . . , g′n)) = (σσ′, (gσ′(1)g
′
1, gσ′(2)g

′
2, . . . , gσ′(n)g

′
n)).

Thus the K-theory spectrum of this category will have
∐
n≥0B(GoΣn) as its 0-space, B(

∐
n≥0B(Go

Σn)) as its 1-space, and an Ω-spectrum above this.

3.3.3 Classical Scissors Congruence

Let X = En, Sn or Hn (n-dimensional hyperbolic space), and let GX be the poset of polytopes in
X. (A polytope in X is a finite union of n-simplices of X; an n-simplex of X is the convex hull of
n+ 1 points (contained in a single hemisphere, if X = Sn).) The group G of isometries of X acts
on GX ; we define a horizontal morphism P Q to be an element g ∈ G such that g · P = Q. We
say that {Pα P}α∈A is a covering family if

⋃
α∈A Pα = P . Then GX is a polytope complex.

Then by theorem 3.2.2 we obtain theorem 1.0.1: K0(SC(GX)) = P(X,G), the classical scissors
congruence group of X. Thus it makes sense to call K(SC(GX)) the scissors congruence spectrum
of X.

3.3.4 Sums of Polytope Complexes

Suppose that we have a family of polytope complexes {Cα}α∈A. Then we can define the “wedge”
of this family by defining C to be the double category where ob C = {∅} ∪

⋃
α∈A ob Cαp (where ∅

will be the initial object), and all morphisms are just those from the Cα. We define AutCh(∅) =⊕
α∈A AuthCα(∅). Then C will be a polytope complex which represents the ”union” of the poly-

tope complexes in {Cα}α∈A. SC(C) =
⊕

α∈A SC(Cα), where the summation means that all but
finitely many of the objects of each tuple will be equal to the zero object. Then K(SC(C)) =∨
α∈AK(SC(Cα)).

3.3.5 Numerical Scissors Congruence

Suppose that K is a number field. Let CK be the polytope complex whose objects are the ideals of
OK . We have a vertical morphism I J if I|J , and no nontrivial horizontal morphisms. (Note
that OK is the initial object.) We say that a finite family {Jα I}α∈A is a covering family if
I|
∏
α∈A Jα, and an infinite family is a covering family if it contains a finite covering family. In this

case it is easy to compute that K(CK) is a bouquet of spheres, one for every prime power ideal of
OK .

Now suppose that K/Q is Galois with Galois group GK/Q. We define CK/Q to be the polytope
complex whose objects and vertical morphisms are the same as those of CK , but where the horizontal
morphisms I J are {g ∈ GK/Q | g · I = J}. Then the K-theory K(SC(CK/Q)) will be∨

pα∈Z
K(SC(SDp)),
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where for each p, p is a prime ideal of K lying above p and Dp is the decomposition group of p. (For
more information about factorizations of prime ideals, see for example [20].) Thus this spectrum
encodes all of the inertial information for each prime ideal of Q.

From the inclusion Q K/Q we get an induced polytope functor CQ CK/Q, and therefore

an induced map f : K(SC(CQ)) K(SC(CK/Q)). To compute this map, it suffices to consider what
this map does on every sphere in the bouquet K(SC(CQ)). Consider the sphere indexed by a prime
power pα. If we factor p = pe1 · · · peg then this sphere maps to g times the map K(S) K(SDp)

(induced by the obvious inclusion S SDp), with target the copy of this indexed by peα. Thus
f encodes all of the splitting and ramification data of the extension K/Q. In particular, we see
that the map K(SC(CQ)) K(SC(CK/Q)) contains all of the factorization information contained
in K/Q.

Note that we can generalize the definition of CK/Q to any Galois extension L/K; with this
definition CK = CK/K .

3.4 Proof of theorem 3.2.2

This section consists mostly of a lot of technical calculations which check that SC(C) satisfies all of
the properties that theorem 3.2.2 claims. In order to spare the reader all of the messy details we
isolate these results in their own section.

3.4.1 Some technicalities about sub-maps and shuffles

In this section all diagrams are in Tw(Cp), and all vertical morphisms are sub-maps.

The following lemmas formalize the idea that we can often commute shuffles and sub-maps past
one another. In particular, it is obvious that if we have a sub-map whose codomain is a horizontal
pushout, then we can pull this sub-map back to the components of the pushout. However, it turns
out that we can do this in the other direction as well: given suitably consistent sub-maps to the
components of a pushout, we obtain a sub-map between pushouts.

Lemma 3.4.1. Given a diagram

C ′ A′ B′

C A B

r p q

τ ′ σ′

τ σ

where the right-hand square is a pullback square and σ has an injective set map, there is an induced
sub-map C ′ ∪A′ B′ C ∪A B. If p, q, r are all covering sub-maps then this map will be, as well.

Proof. Consider the right-hand square. Write A = {ai}i∈I , B = {bj}j∈J (and analogously for A′,
B′). Write J = I ∪ J0 for J0 = J\imI; and J ′ = I ′ ∪ J ′0, analogously. We claim that q can be
written as qI ∪ q0, where qI : {b′j′}j′∈I′ {bj}j∈I and q0 : {b′j′}j′∈J ′0 {bj}j∈J0 . Indeed, qI is
well-defined because the diagram commutes, and q0 is well-defined because the right-hand square
is a pullback. But then we can write the given diagram as the coproduct of two diagrams

34



C ′ A′ {b′j′}j′∈I′ ∅ ∅ {b′j′}j′∈J ′0

C A {bj}j∈I ∅ ∅ {bj}j∈J0

τ ′ σ′

τ σ

r p qI q0

As the statement obviously holds in the right-hand diagram, it suffices to consider the case of the
left-hand diagram, where σ is bijective. In this case, σ and σ′ are both isomorphisms, and so the
morphism we are interested in is r, for which the lemma clearly holds.

Suppose that we are given a diagram

A′ B′ C ′

A B C

p q r

σ′

σ

f ′

f

Then from the definition of σ∗ and (σ′)∗ it is easy to see that we get an induced sub-map
(σ′)∗C ′ σ∗C, which will be a covering sub-map if p, q, r are. The analogous statement for
σ∗ is more difficult to prove, but is also true.

Lemma 3.4.2. Given a diagram

C ′ A′ B′

C A B

r p q

f ′

f

σ′

σ

where the right-hand square is a pullback, the induced sub-map σ′∗C
′ σ∗C exists and is a covering

sub-map if q and f ′ are covering sub-maps.

Proof. We can assume that σ’s set map is surjective, since otherwise we can write the right-hand
square as the coproduct of two squares

A′ B′0 ∅ B′1

A B0 ∅ B1

σ′

σ

In the right-hand case the map we are interested in is just B′1 B1, so the result clearly holds. So
we focus on the original question when σ has a surjective set-map. As (Tw(Cp)Sub

v ↓ B) is a preorder
and both σ′∗C

′ and σ∗C sit over B it suffices to show that this morphism exists in (Tw(Cp)Sub
v ↓ B).

We claim that it suffices to show that σ′∗C
′ = σ∗C

′, as if this is the case then

Hom(Tw(Cp)Sub
v ↓B)(σ

′
∗C
′, σ∗C) = Hom(Tw(Cp)Sub

v ↓B)(σ∗C
′, σ∗C)

⊇ Hom(Tw(Cp)Sub
v ↓A)(C

′, C) 6= ∅
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so we will be done.

Write A = {ai}i∈I , A′ = {a′i′}i′∈I′ , B = {bj}j∈J , etc., and let C ′i = {c′k′}pf ′(k′)=i for i ∈ I and
C ′i′ = {c′k′}f ′(k′)=i′ for i′ ∈ I ′. Then we know that

σ∗C
′ =

∐
j∈J

∏
i∈σ−1(j)

(Σ−1
i )∗C ′i and σ′∗C

′ =
∐
j′∈J ′

∏
i′∈σ′−1(j′)

(Σ′
−1
i′ )∗C ′i′ .

(Note that all of these products exist because C is vertically closed under pullbacks, and in a
preorder a pullback is the same as a product.) Now∏

i∈σ−1(j)

(Σ−1
i )∗C ′i =

∏
i∈σ−1(j)

∐
i′∈p−1(i)

(Σ′i′
−1

)∗C ′i′

Because the right-hand square is a pullback square we can associate I ′ to pairs (i, j′) ∈ I ×J J ′.
For any two such pairs i′1 = (i1, j

′
1) and i′2 = (i2, j

′
2) if j′1 6= j′2 then (Σ′i′1

−1)∗C ′i′1
× (Σ′i′2

−1)∗C ′i′2
= ∅;

in particular we know that most of the crossterms in this product will be ∅. Thus we can reorder
the indexing of the product and swap the coproduct and the product to get∏

i∈σ−1(j)

∐
i′∈p−1(i)

(Σ′i′
−1

)∗C ′i′ =
∐

j′∈q−1(j)

∏
i′∈σ′−1(j′)

(Σ′i′
−1

)∗C ′i′

=
∐

j′∈q−1(j)

∏
i′∈σ′−1(j′)

(Σ′i′
−1

)∗C ′i′ .

Thus

σ∗C
′ =

∐
j∈J

∏
i∈σ−1(j)

(Σ−1
i )∗C ′i =

∐
j∈J

∐
j′∈q−1(j)

∏
i′∈σ′−1(j′)

(Σ′
−1
i′ )∗C ′i′ = σ′∗C

′

and we have our desired sub-map σ′∗C
′ σ∗C. If q and f ′ are covering sub-maps then σ′∗f

′ is a
covering sub-map, which means that σ′∗C

′ σ∗C is a covering sub-map (as it is the pullback of
qσ′∗f

′ along σ∗f), as desired.

Lastly we prove a couple of lemmas which show that covering sub-maps do not lose any in-
formation. The first of these shows that if two shuffles are related by covering sub-maps then
they contain the same information; the second shows that pulling back a covering sub-map along
a shuffle cannot lose information.

Lemma 3.4.3. Suppose that we have the following diagram:

A′ B′

A B

p q

τ

σ

Then this diagram is a pullback square. If q has a surjective set-map and τ is an isomorphism then
σ must also be an isomorphism.

Proof. Pulling back q along σ gives us a commutative square
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A′ B′

σ∗B′ B′

τ

σ′

∼=r

so it suffices to show that in any such diagram r is an isomorphism. Suppose it were not. Then
there would exist a′ ∈ A′ and an a ∈ σ∗B′ such that we have a non-invertible vertical morphism
a′ a, and horizontal morphisms Fa : a b (for some b ∈ B′) such that the pullback of the
vertical identity morphism on b is the non-invertible morphism a′ a. Contradiction. Thus r
must be an isomorphism, and we are done with the first part.

Now suppose that q has a surjective set map and τ is an isomorphism. As any shuffle with
bijective set map is an isomorphism it suffices to show that σ has a bijective set map. However,
as this is a pullback square on the underlying set maps we can just consider it there. As q has a
surjective set map and the pullback of σ along q is a bijection σ must also be a bijection, and we
are done.

3.4.2 Checking the axioms

We now verify that our definition of SC(C) works and then check the axioms for it to be a Wald-
hausen category. First we check that all of our definitions are well-defined.

Lemma 3.4.4. SC(C) is a category, and the cofibrations and weak equivalences form subcategories
of SC(C).

Proof. We need to check that composition is well-defined. Suppose that we are given morphisms
f : A B and g : B C in SC(C), and suppose that we are given two different diagrams
representing each morphism. Then we have the following diagram, where the top and bottom
squares are pullbacks:

σ∗1B
′
1

A′1 B′1

A B C

A′2 B′2

σ∗2B
′
2

q′1

p1 q1

p2 q2

q′2

σ′1

σ1 τ1

σ2 τ2

σ′2

As each vertical section represents the same map we have reindexings ιA : A1 A2 and ιB : B1 B2;
we need to show that we therefore have a reindexing σ∗1B

′
1 σ∗2B

′
2. It is easy to see that pulling

back a reindexing along either a sub-map or a shuffle produces another reindexing. Thus if we pull
back ιA along q′2 to get a morphism ι′A, and then pull back ιB along ι′Aσ

′
2 to get ι′B we get a diagram
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σ∗1B
′
1

A A′1 B B′1 C

X

where ι′2ι
′
1 : X σ∗2B

′
2. However, as both the upper and lower squares are pullbacks they are

unique up to unique vertical isomorphism, so we obtain a vertical isomorphism X σ∗1B
′
1, and

we are done.
It remains to show that weak equivalences and cofibrations are preserved by composition. Con-

sider a composition of morphisms determined by the following diagram:

σ∗B′

A′ B′

A B C

q′

p q

σ′

σ τ

If q is a cover then so is q′, so if both p and q are covers then q′p is also a cover. From the formula
in lemma 2.2.2 it is easy to see that if a shuffle has an injective (resp. bijective) set map then so
will its pullback, so if both σ and τ are injective (resp. bijective) then τσ′ will be as well. Thus
cofibrations and weak equivalences form subcategories, as desired.

Lemma 3.4.5. Any isomorphism is both a cofibration and a weak equivalence.

Proof. Suppose that f : A B is an isomorphism with inverse g : B A. In Tw(Cp) f and g
are represented by diagrams

A A′ B B B′ A
p qσ τ

respectively. As gf = 1A we must have p ◦ σ∗(q) be invertible, so in particular p must be an
isomorphism; thus we can pick a diagram representing f such that p = 1A (which is in particular a
covering sub-map). Applying the analogous argument to g we can see that we can pick a diagram
representing g such that q = 1B. In that case, it is easy to see that we must have τ = σ−1

in Tw(Cp)h, so σ and τ must be invertible. From this we see that any isomorphism is both a
cofibration and a weak equivalence, as desired.

Now we move on to proving some of the slightly more complicated axioms defining a Waldhausen
category. We check that pushouts along cofibrations exist, and that they preserve cofibrations. In
fact, in SC(C) pushouts not only preserve cofibrations; they also preserve weak equivalences.

Lemma 3.4.6. Given any diagram

C A B
f

the pushout C ∪A B of this diagram exists, and the morphism C C ∪A B is a cofibration. If f
were also a weak equivalence, then this map would also be a weak equivalence.

Proof. The diagram above is represented by the following diagram in Tw(Cp):
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A′′ A′

C A B

τ σq p

Complete the middle part of this diagram to a pullback square

Ã A′

A′′ A

q′

p′ p

q

Now we define s : C ′ C to be τ∗(p
′). As τ∗τ∗(p

′) must factor through p′, q ◦ τ∗τ∗(p′) must factor
through p, so we can write q ◦ τ∗τ∗(p′) = p ◦ r′. We then define r : B′ B to be σ∗(r

′). (Note
that if τ has an injective set map then r = σ∗(q

′).) Now we have the following diagram in Tw(Cp):

C ′ A′′′ A′′′ B′

C A′′ A′ B

s r

τ ′ σ′

τ σ

where both squares are pullback squares. The top row of this diagram consists only of maps in
Tw(Ch). As Ch is a groupoid it in particular has all pushouts, and so by lemma 2.2.4 the pushout
C ′ ∪A′′′ B′ exists in Tw(Cp); we claim that gives us the pushout of the original diagram. Note that
the set-map of the shuffle C ′ C ′ ∪A′′′ B′ will be injective (and bijective, if σ’s was) because it is
the pushout of σ′, so the pushout of a cofibration (resp. weak equivalence) is another cofibration
(resp. weak equivalence).

To check that this is indeed the pushout, suppose that we are given any commutative square

A B

C D

f

The diagonal morphism A D is represented by a diagram A
t
Â

ρ
D in Tw(Cp). Considering

the composition around the top, we see that Â factors through p, and considering the composition
around the bottom it must factor through q. In addition, as t comes from the bottom composition
we know that σ∗σ∗t = t and thus t must factor through A′′′. We can now apply lemma 3.4.1 to see
that we indeed get a unique factorization through our pushout, as desired.

We have now shown that SC(C) is a category with cofibrations which is equipped with a sub-
category of weak equivalences, and we move on to proving that all cofibration sequences split
canonically. Given a cofibration f : A ↪→ B we say that the cofiber of f is the pushout of f along
the morphism A ∗. We will denote such a map by

B B/A

Corollary 3.4.7. Any cofiber map has a canonical section; this section is a cofibration.
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Proof. Suppose that we are given a cofiber map B B/A. Suppose that this map is represented
by the diagram

B B′ B/A
σp

From the computation in the proof of lemma 3.4.6 it is easy to see that if we write B = {bj}j∈J
then B′ = {bj}j∈J ′ where J ′ ⊆ J and σ has a bijective set-map. Thus we can define a pure shuffle
σ−1 : B/A B which will be our section. If we change the diagram representing the fiber map by
a reindexing then σ−1 changes exactly by this reindexing, so this construction is well-defined.

Remark. This construction is canonical in the twisted arrow category whose objects are cofibrations
of SC(C). It is not canonical in the ordinary arrow category.

Now it only remains to show that the weak equivalences of SC(C) satisfy all of the axioms we
desire of a Waldhausen category.

Lemma 3.4.8. For any two composable morphisms f and g, if gf and f are weak equivalences
then so is g. If C satisfies the extra condition

(G) The empty family is not a covering family for any polytope of C. Given a family A =
{Xα X}α∈A and covering families {Xαβ Xα}β∈Bα, if the refined family

{Xαβ X}(α,β)∈
∐
α∈ABα

is a covering family then so is A.

then if gf and g are weak equivalences, then so is f . (In other words, if (G) is satisfied then SC(C)
satisfies the Saturation Axiom.)

Proof. Let f : A B and g : B C be morphisms in SC(C). As weak equivalences form a
subcategory of SC(C) we already know that if f and g are both weak equivalences then so is gf . So
it suffices for us to focus on the other two cases. In the following discussion we will be considering
the following diagram

σ∗B′

A′ B′

A B C

q′

p q

σ′

σ τ

where the middle square is a pullback.
First suppose that gf and f are weak equivalences. Then we know that pq′ is a covering sub-

map, which means that q′ must be a covering sub-map as well. We know that q′ = σ∗q, and as σ
is an isomorphism we must have q = σ−1)∗q′. As covering sub-maps are preserved by pullback q
must also be a covering sub-map. In addition, by lemma 3.4.3 as σ is an isomorphism so is σ′, and
thus (as τσ′ is an isomorphism) τ must be as well. Thus we see that q is a covering sub-map and
τ an isomorphism, so g is a weak equivalence as desired.

Now, suppose that gf and g are weak equivalences and that (G) is satisfied. We know that both
τ and τσ′ are isomorphisms, which means that σ′ must be as well. In addition, pq′ is a covering
sub-map and so is q′ (as covers are preserved by pullbacks) which means (by (G)) that p must be as
well. As q is a cover with surjective set-map (as by (G) there are no empty covers), by lemma 3.4.3
σ therefore must also be an isomorphism. As p is a covering sub-map and σ is an isomorphism, f
is also a weak equivalence.
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Lemma 3.4.9. SC(C) satisfies the extension axiom. In other words, given any diagram

A B B/A

A′ B′ B′/A′

∼

f ∼

f is also a weak equivalence.

Proof. It is easy to see that the two sections given by corollary 3.4.7 are going to be consistent in
the sense that they will split the above diagram into two diagrams

A Ã B0 B/A

A′ Ã′ B′0 B′/A′

∼

∼

∼

fA

∼=

fB

∼

∼=

where f will equal fA t fB up to isomorphism. Thus it suffices to show that both fA and fB are
weak equivalences. That fB is a weak equivalence is obvious from the diagrams. The fact that fA
is a weak equivalence follows from lemma 3.4.8.

Lemma 3.4.10. SC(C) satisfies the gluing axiom. In other words, given any diagram

C A B

C ′ A′ B′

∼ ∼ ∼

the induced morphism C ∪A B C ′ ∪A′ B′ is also a weak equivalence.

Proof. It is a simple calculation to see that it suffices to consider diagrams represented in Tw(Cp)
by

C AC A B

C ′ A′C A′ B′

p

σ

σ′

By pulling back p along σ we get a cover A′C AC . Then we have a cover A′C×A′B′ AC×AB,
and thus a diagram

C AC AC ×A B

C ′ A′C A′C ×A′ B′

σ

σ′
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to which we can apply lemma 3.4.2, resulting in a cover

σ′∗(A
′
C ×A′ B′) σ∗(AC ×A B).

However, a simple computation using the definition of the pushout shows us that this is exactly
the morphism between the pushouts of the top and bottom row. As it is represented in Tw(Cp) by
a covering sub-map, it must be a weak equivalence, as desired.

Lastly we prove that our construction is in fact functorial.

Proposition 3.4.11. A polytope functor F : C D induces an exact functor of Waldhausen
categories SC(F ) : SC(C) SC(D).

Proof. As Tw is functorial, F induces a double functor Tw(F ) : Tw(C) Tw(D). Then we define
the functor SC(F ) : SC(C) SC(D) to be the one induced by Tw(F ). This is clearly well-defined
on objects. As Fv preserves pullbacks and the initial object, Tw(F )v takes sub-maps to sub-maps,
and thus SC(F ) is well-defined on morphisms. Composition in SC(C) is defined by pulling back
vertical morphisms along horizontal morphisms, which commutes with F as F is a polytope functor,
so SC(F ) is a well-defined functor. If f is a (vertical or horizontal) morphism in Tw(C) then F (f)
and f have the same set-map, so Tw(F ) preserves injectivity and bijectivity of set-maps, so to see
that SC(F ) preserves cofibrations and weak equivalences it suffices to check that Tw(F ) preserves
covering sub-maps, which it must as Fv is continuous. So in order to have exactness it suffices to
show that SC(F ) preserves pushouts along cofibrations.

Suppose that we are given the diagram

C A B

in SC(C), which is represented by the diagram

A′ A′′

C A B

q pτ σ

in Tw(C). The pushout of this is computed by computing the pullback of the two sub-maps, pushing
forward the result along τ , pulling it back along τ , and then pushing it forward along σ. Thus in
order to see that SC(F ) preserves pushouts it suffices to show that Tw(F ) commutes with pullbacks
of sub-maps, and pulling back or pushing forward a sub-map along a shuffle. By considering the
formulas for pullbacks and pushforwards we see they they consist entirely of pulling back squares
in C and taking vertical pullbacks in C, so we are done.
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Chapter 4

Suspensions, cofibers, and
approximation

4.1 Thickenings

Definition 4.1.1. Let C be a polytope complex. The polytope complex C./ is the full subcategory
of Tw(Cp) containing all objects {ai}i∈I ∈ Tw(Cp) such that for all distinct i, j ∈ I there exists
an a ∈ C such that ai ×a aj = ∅. The topology on C./v is defined pointwise. More precisely, let

X = {xi}i∈I , and Xα = {x(α)
j }j∈Jα . We say that {pα : Xα X}α∈A is a covering family if for

each i ∈ I the family {Pαj : x
(α)
j xi}j∈(pα)−1(i),α∈A is a covering family in C.

It is easy to check that −./ is in fact a functor PolyCpx PolyCpx. It will turn out that
−./ is a monad on PolyCpx, and that SC : PolyCpx WaldCat factors through the inclusion
PolyCpx Kl(−./) (the Kleisli category of this monad). This factorization provides us with
extra morphisms between polytopes, which will be exactly the morphisms we need later when we
start doing calculations with face maps in the S• construction.

We start by considering the monad structure of −./. We have a natural inclusion ηC : C C./
which includes C into C./ as the singleton sets; these assemble into a natural transformation η :
1 −./. This transformation is not a natural isomorphism, even through, morally speaking, C./
ought to have the same K-theory as C (as it contains objects which are formal sums of objects of
C). It turns out that once we pass to WaldCat by SC we can find a natural “almost inverse”: an
exact left adjoint.

Lemma 4.1.2. The functor −./ is a monad on PolyCpx.

Proof. In order to make −./ into a monad, we need to define a unit and a multiplication. The unit
η : 1PolyCpx (−./) will be the natural transformation defined on each polytope complex C by
the natural inclusion C C./ given by including C as the singleton sets indexed by the set {∗}.
The multiplication µ : (−./)./ (−./) is given by the functor C././ C./ given on objects by

{{a(i)
j }j∈Ji}i∈I 7−→ {a

(i)
j }(i,j)∈∐i∈I Ji

.

In order for these definitions to make −./ into a monad, we need to make sure that the way we
choose the coproduct of indexing sets satisfies the following conditions:∐

∐
k∈K Jk

Ij,k =
∐
k∈K

∐
j∈Jk

Ij,k and
∐
i∈I
{∗} =

∐
{∗}

I = I.
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We do this in the following manner. For any elements a, b in a finite set I, we define a ◦ b to be
the tuple (a, b) if neither a nor b is itself a tuple. If a = (x1, . . . , xn) and b is not a tuple, then
a ◦ b = (x1, . . . , xn, b); if a is not a tuple and b is a tuple (y1, . . . , ym) then a ◦ b = (a, y1, . . . , ym).
If both a and b are tuples, as above, then a ◦ b = (x1, . . . , xn, y1, . . . , ym). We then define

∐
i∈I

Ji =


I if Ji = {∗} for all i ∈ I,
Ji if I = {∗},
{i ◦ j | i ∈ I, j ∈ Ji} otherwise.

It is easy to check that this satisfies the conditions we need.

Lemma 4.1.3. There exists a natural transformation ν : SC(−./) SC(−) which for every poly-
tope complex C is exactly left adjoint to SC(ηC) : SC(C) SC(C./). The counit of this adjunction
will be the identity transformation.

Proof. Fix a polytope complex C, and let G = SC(ηC). To show that G has a left adjoint it suffices
to show that for any B ∈ SC(C./), (B ↓ G) has an initial object. If we write B = {Bj}j∈J , where

Bj = {bjk}k∈Kj then the pure covering sub-map

{Bj}j∈J {{bjk}}(j,k)∈
∐
j∈J Kj

is the desired object; we define νC to be the adjoint where νC(B) = {bjk}(j,k)∈
∐
j Kj

. Then the unit is
objectwise a pure covering sub-map — thus a weak equivalence — and the counit is the identity, as
desired. To see that these assemble into a natural transformation, note that νC “flattens” each set
of sets by covering it with a set of singletons. By purely set-theoretic observations it is clear that
this commutes with applying a functor pointwise to each set element, so ν does, indeed, assemble
into a natural transformation.

It remains to show that νC is exact. As left adjoints commute with colimits and SC(C) has all
pushouts, νC preserves all pushouts. The fact that F preserves cofibrations and weak equivalences
follows from the definition of F and the fact that covering sub-maps in C./ are defined pointwise.

Now consider the Kleisli category of this monad, Kl(−./). We have a natural inclusion ι :
PolyCpx Kl(−./) which is the identity on objects, and takes a polytope functor F : C D
to the functor ηDF . Informally speaking, Kl(−./) is the category of sets of polytopes that can be
“added”, in the sense that we can think of a covering sub-map {ai}i∈I {bj}j∈J as expressing
the relation

∑
i∈I ai =

∑
j∈J bj . Using the functor given by lemma 4.1.3 we can extend SC to a

functor on Kl(−./) rather than just on PolyCpx.

Lemma 4.1.4. The functor SC : PolyCpx WaldCat factors through ι.

Proof. We define a functor S̃C : Kl(−./) WaldCat by setting S̃C(C) = SC(C) on polytope
complexes C ∈ Kl(−./), and by

S̃C(F : C D) = νDSC(F ) : SC(C) SC(D./) SC(D).

Note that given any polytope functor F : C D,

S̃C(ι(F )) = νDSC(ηD)SC(F ) = SC(F ),

as νD is left adjoint to SC(ηD) and the counit of the adjunction is the identity. Thus S̃Cι = SC, as
desired.
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By abusing notation we will write SC for the extension Kl(−./) WaldCat.

We finish up with an example of a polytope complex which is an algebra over −./, and a polytope
complex which is not an algebra over −./. Consider GEn , the polytope complex of n-dimensional
Euclidan polytopes. We can define a functor G./En GEn by mapping any set of pairwise disjoint
polytopes to the union of that set (which is well-defined if we define a polytope to be a nonempty
union of simplices). It is easy to check that this does, in fact, make GEn into an algebra over −./.

Now let C be the polytope complex of rectangles in R2 whose sides are parallel to the coordinate
axes, with the group of translations acting on it. We claim that this is not an algebra over −./.
Indeed, suppose that it were, so we have a functor F : C./ C. Consider a rectangle R split into
four sub-rectangles:

R1 R2

R3 R4

We know that F ({R}) = R and F ({Ri}) = Ri. Now consider F ({R1, R4}). This must sit inside
R, and also contain both R1 and R4, so it must be R. Similarly, F ({R2, R3}) = R. But then

R = F ({R1, R4})×F ({R}) F ({R2, R3}) = F ({R1, R4} ×{R} {R2, R3}) = F (∅) = ∅.

Contradiction. So C is not an algebra over −./.

4.2 Filtered Polytopes

The S• construction considers sequences of objects included into one another. In this section we
will look at filtered objects where all of the cofibrations are actually acyclic cofibrations.

Let WnSC(C) be the full subcategory of FnSC(C) which contains all objects

A1 A2 · · · An.∼ ∼ ∼

We can make WnSC(C) into a Waldhausen category by taking the structure induced from FnSC(C).
Then WnSC(C) contains W̃nSC(C) — the full subcategory of WnSC(C) of all such objects which
can be represented by only pure sub-maps — as an equivalent subcategory (by lemma 2.3.5).

Our goal for this section is to define a polytope complex fnC such that SC(fnC) is equivalent
(as a Waldhausen category) to WnSC(C).

Definition 4.2.1. Let fnC be the following polytope complex. An object A ∈ fnC is a diagram

A1 A2 · · · An

in Tw(Cp) such that each Ai ∈ C./ and A1 is a singleton set. The vertical morphisms p : A B
are diagrams

A1 A2 · · · An

B1 B2 · · · Bn

p1 p2 pn
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in C./, and the horizontal morphisms are defined analogously. We put a topology on fnC by defining
a family {Xα X}α∈A to be a covering family if for each i = 1, . . . , n the family {Xαi Xi}α∈A
is a covering family in C./.

Now we construct the functors which give an isomorphism between W̃nSC(C) and SC(fnC).
The functor H : SC(fnC) W̃nSC(C) simply takes an object of SC(fnC) to the sequence of its
levelwise unions. More formally, given an object {ai}i∈I in SC(fnC), where for each i ∈ I we have

ai = a1
i a2

i · · · ani ,

with aji ∈ C./, we define an object H({ai}i∈I) ∈ W̃nSC(C) by

A1
∼ A2

∼ · · · ∼ An

where Aj =
∐
i∈I a

j
i ∈ Tw(Cp). In other words, we consider each object ai to be a diagram in

Tw(Cp) and we take the coproduct of all of these diagrams.

To construct an inverse G : W̃nSC(C) SC(fnC) to this functor we take a diagram in W̃nSC(C)
and turn it into a coproduct of pure covering sub-maps in Tw(Cp). It will turn out that each of
these diagrams represents an object of SC(fnC), which will give us the desired functor. Given an

object A ∈ W̃nSC(C) represented by

A1
∼ A2

∼ · · · ∼ An

we know that we can write every acyclic cofibration in this diagram as a pure covering sub-map.
When a morphism can be represented in this way the representation is unique, so we can in fact
consider this object to be a diagram

A1 A2 · · · An

in Tw(Cp). This sits above an analogous diagram in FinSet. Given any such diagram in FinSet
we can write it as a coproduct of fibers over the indexing set I of A1. Consequently we can write
A as ∐

i∈I

(
Ai1 Ai2 · · · Ain

)
.

We will show that each of these component diagrams actually represents an object of fnC. Indeed,
we know by definition that Ai1 is a singleton set {ai}. Thus if we write Aij as {bk}k∈K , from the fact
that each of the morphisms in the diagram is a sub-map we know that for K, k′ ∈ K, bk×ai bk′ = ∅,
so each Aij is an object of C./. Thus this diagram is an object of fnC as desired. This definition
extends directly to the morphisms as well.

We need to prove that these functors are exact and inverses. It is easy to see that they are
inverses on objects, so we focus our attention on the morphisms in the categories. To this end
we define two projection functors π1 : WnSC(C) SC(C) and P1 : fnC C which will help us
analyze the situation.

Lemma 4.2.2. Let P1 : fnC C take a diagram A1 · · · An to the unique element of A1.
Then the functor SC(P1) is faithful.

Proof. It suffices to show that given any diagram

46



A1 A2

B1 B2

∼

∼

f

there exists at most one morphism g : A2 B2 that makes the diagram commute. In particular,
if we consider the diagram in Tw((fnC)p) representing such a commutative square, we have

A2 A′2 B2

A1 A′1 B1
σ

where the morphism A′2 A′1 is a covering sub-map because the square commutes. In particular,
this means that A′2 = σ∗B2. Thus we can complete the square exactly when we have a sub-map
σ∗B2 A2 which makes the left-hand square commute, of which there is at most one.

And, completely analogously, we can prove a symmetric statement about π1.

Lemma 4.2.3. Let π1 : W̃nSC(C) SC(C) be the exact functor which takes an object A1
∼ · · · ∼ An

to A1. Then π1 is faithful.

We can now prove the main result of this section.

Proposition 4.2.4. WnSC(C) is exactly equivalent to SC(fnC).

Proof. We will show that G and H induce isomorphisms between W̃nSC(C) and SC(fnC), which

will show the result as W̃nSC(C) is exactly equivalent to WnSC(C).
It is clear that GH and HG are the identity on objects, so it remains to show that they

are inverses on morphisms. From the definitions it is easy to see that SC(P1)G = π1 and that
π1H = SC(P1), so that

SC(P1)GH = π1H = SC(P1) and π1HG = SC(P1)G = π1.

As SC(P1) and π1 are both faithful, if we consider these on hom-sets we see that G and H are

mutual inverses on any hom-set. Thus W̃nSC(C) is isomorphic to SC(fnC).
It remains to show that G and H are exact functors. We already know that they preserve

pushouts, so all it remains to show is that they preserve cofibrations and weak equivalences. Note
that we know by definition that π1 and SC(P1) are exact functors; thus in order to show that G
and H are exact it suffices to show that π1 and SC(P1) reflect cofibrations and weak equivalences.

For both of these cases it suffices to show that in Tw(Cp) if

A1 A′1 B1

A2 σ∗B2 B2

i j

p

q

σ

σ̃
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commutes and σ has an injective set-map, then q is a covering sub-map and σ̃ has an injective
set-map. The first of these is true because q is the pullback along i of jp, which is a covering
sub-map; the second of these is true because pullbacks preserve injectivity of set-maps. So we are
done.

Remark. If we define Pn and πn analogously to P1 and π1 we see that SC(Pn) and πn are exact
equivalences of categories. Thus SC(fnC) and WnSC(C) are exactly equivalent, as they are both
equivalent to SC(C). We do not use these functors because they are not compatible with the
simplicial maps of SnSC(C), and thus will not give inverse equivalences on the K-theory.

4.3 Combing

Let f : A B ∈ SC(C) be a cofibration. We define the image of f to be the cofiber of the
canonical cofibration B/A B (see corollary 3.4.7). We will write the image of f as im(f); when
the cofibration is clear from context we will often write is as imB(A). Note that we have an acyclic
cofibration

A ∼ imB(A)

More concretely, if we write A = {ai}i∈I and B = {bj}j∈J , and if f can be represented by covering
sub-map p and the shuffle σ, imB(A) = {bj}j∈imσ.

Now suppose that we are given an object A = (A1 A2 · · · An) ∈ FnSC(C). Then we
define the i-th strand of A, Sti(A) to be the diagram

Ai/Ai−1
∼ imAi+1(Ai/Ai−1) ∼ · · · ∼ imAn(Ai/Ai−1).

We can consider Sti(A) to be an object of FnSC(C) by padding the front with sufficiently many
copies of the zero object; then we can canonically write A =

∐n
i=1 Sti(A).

Definition 4.3.1. We will say that a morphism f : A B ∈ FnSC(C) is layered if for all
1 ≤ i < k ≤ n the diagram

Ak/Ai Ak

Bk/Bi Bk

fk/fi fk

commutes. We define LnSC(C) to be the subcategory of FnSC(C) containing all layered morphisms.

Not all morphisms are layered. For example, let X be a nonzero object, and let g : X Y be
any cofibration in SC(C). Then ∅ Y and X Y are both objects of F2SC(C) and we have a
non-layered morphism

∅ Y

X Y

between them. As all cofibers of acyclic cofibrations are trivial, all morphisms of WnSC(C) are
layered. In fact, if we let Ini : Fn−i+1SC(C) FnSC(C) be the functor which pads a diagram with
i copies of ∅ at the beginning, then the restriction of Ini to Ln−i+1SC(C) has its image in LnSC(C).
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Lemma 4.3.2.

1. f is layered if and only if for all 1 ≤ i < n, the morphism

fi,i+1 : (Ai Ai+1) (Bi Bi+1) ∈ F2SC(C)

is layered.

2. Given any commutative square (A1 A2) (B1 B2) we have an induced commu-
tative square (imA2(A1) A2) (imB2(B1) B2). Thus if the commutative square
(A1 A2) (B1 B2) is layered then so is the commutative square (A2/A1 A2) (B2/B1 B2).

Proof.

1. The forwards direction is trivial, so it suffices to prove the backwards direction. We will prove
it by induction on k. For k = i+ 1 this is given. Now suppose that it is true up to k. Then
we have the following diagram

Ak Ak/Ai

Ak+1/Ak Ak+1 Ak+1/Ai

Bk Bk/Bi

Bk+1/Bk Bk+1 Bk+1/Bi

in which we know that every face other than the front one commutes; we want to show that
the front face also commutes. Let

α : Ak+1/Ai Ak+1 Bk+1

and

β : Ak+1/Ai Bk+1/Bi Bk+1;

we want to show that α = β. As Ak+1/Ai is the pushout of the diagram

Ak+1 Ak Ak/Ai,

it suffices to show that fα = fβ and gα = gβ for f : Ak/Ai Ak+1/Ao and g :
Ak+1 Ak+1/Ai. The first of these follows directly from the fact that all faces of the
cube but the front one commute. For the second of these, note that we have a weak equiva-

lence Ak q Ak+1/Ak ∼ Ak+1 and weak equivalences are epimorphisms, so in fact it suffices
to show that g1α = g1β and g2α = g2β for

g1 = Ak Ak+1 Ak+1/Ai
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and
g2 = Ak+1/Ak Ak+1 Ak+1/Ai.

The first of these follows from a simple diagram chase, keeping in mind that all horizontal
cofibrations in this cube are actually sections of cofiber maps. The second of these also turns
into a simple diagram chase after noting that for any sequence of cofibrations X Y Z
in SC(C) we have

Z/Y Z Z/X Z = Z/Y Z.

2. Note that if we have a commutative square (A1 A2) (B1 B2) it can be represented
by the following commutative diagram in Tw(Cp):

A1 A′1 A2

A′′1 X A′2

B1 B′1 B2

F

F

where the starred squares are pullbacks. We know A′1
∼= imA2(A1) and B′1

∼= imB2(B1) and
the middle column in the diagram represents a morphism between them. In fact, the right-
hand half of this diagram is — up to isomorphism — exactly the square that the lemma
states exists. The second part of the statement follows because the cofiber of A2/A1 A2

is exactly imA2(A1).

Lemma 4.3.3. LnSC(C) is a Waldhausen category. The cofibrations (resp. weak equivalences)
in LnSC(C) are exactly the morphisms which are levelwise cofibrations (resp. weak equivalences).
LnSC(C) is a simplification of FnSC(C).

We postpone the proof of this lemma until section 4.7 as it is technical and not particularly
illuminating.

Lemma 4.3.4. Sti is an exact functor LnSC(C) Wn−i+1SC(C). We have a natural transfor-
mation ηi : IniSti id given by the natural inclusions imAk(Ai/Ai−1) Ak. On Wn−i+1SC(C),

StiIni = id and StjIniSti = 0

for i 6= j.

Proof. Let f : A B ∈ LnSC(C). We claim that the morphism

Ai/Ai−1 Ai+1 · · · An

Bi/Bi−1 Bi+1 · · · Bn

fi/fi−1 fi+1 fn
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in Fn−i+1SC(C) is also layered. By lemma 4.3.2(1) we know that it suffices to check that each square
in this diagram satisfies the layering condition. All squares but the first one satisfy it because f is
layered. The first square can be factored as

Ai/Ai−1 Ai Ai+1

Bi/Bi−1 Bi Bi+1

fi/fi−1 fi fi+1

The right-hand square satisfies the layering condition because f is layered; the left-hand square
satisfies it by lemma 4.3.2(2). If we let Ti : LnSC(C) Ln−i+1SC(C) be the functor taking
an object to this truncation then Ti is exact, as by lemma 4.3.3 layered cofibrations are exactly
levelwise. Note that TiIni = id and we have a natural transformation η′ : IniTi id.

We can write Sti = St1Ti; thus if we can prove the lemma for i = 1 we will be done. The fact
that f is layered implies that St1 is a functor LnSC(C) WnSC(C) (as it is obtained by taking
levelwise cofibers in a commutative diagram). As colimits commute past one another, we see that
this preserves pushouts along cofibrations. Thus to see that St1 is exact it remains to show that
it preserves cofibrations and weak equivalences, which is true because both weak equivalences and
cofibrations are preserved by taking cofibers, and St1 simply takes two successive cofibers.

The natural transformation η1 is obtained by factoring each cofibration A1 Ak through the

weak equivalence A1
∼ imAk(A1). By the discussion in the proof of lemma 4.3.2(2) this will in

fact be a natural transformation.

Now we show the last part of the lemma. It is a simple computation to see that Sti|WmSC(C) is
the identity if i = 1, and 0 otherwise. Thus StiIni = St1TiIni = St1 is the identity. If j < i then the
j-th component of IniSti is ∅, so StjIniSti = 0 trivially. If j > i then StjIniSti = Stj−i+1TiIniSti =
Stj−i+1Sti = 0 because j − i+ 1 > 1. Thus we are done.

Proposition 4.3.5. Let CP :
∏n
m=1WmSC(C) LnSC(C) be the functor which takes an n-tuple

(X1. . . . , Xn) to
∐n
i=1 In(n−i+1)(Xi). We have an exact equivalence of categories

St : LnSC(C)�
n∏

m=1

WmSC(C) : CP,

where St is induced by the functors Stm for m = 1, . . . , n.

Proof. We first show that these form an equivalence of categories. From lemma 4.3.4 above, we
know that the composition St◦CP is the identity on each component (as StiStjA is the zero object
for i 6= j), and thus the identity functor. On the other hand, the composition CP ◦St has a natural
transformation η =

∐n
m=1 ηn−m+1 : CP ◦ St id; it remains to show that η is in fact a natural

isomorphism. However, for every object A, ηA is simply the natural morphism
∐n
i=1 Sti(A) A,

which is clearly an isomorphism. So these are in fact inverse equivalences.

As each component of CP is exact (as cofibrations and weak equivalences in LnSC(C) are
levelwise) we know that CP is exact. On the other hand, Sti is exact for all i, so St is exact. So
we are done.

The functor St “combs” an object of LnSC(C) by separating all of the strands of different
lengths.
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4.4 Simplicial Polytope Complexes

Our goal for this section is to assemble the fiC into a simplicial polytope complex which will mimic
Waldhausen’s S• construction.

Given 1 ≤ i ≤ n we define a morphism ∂
(n)
i : fnC fn−1C in Kl(−./) induced by skipping

the i-th term. If i > 1 this functor comes from PolyCpx; if i = 1 then we cut off the singleton
element from the front, and therefore have to split the rest of the object into fibers over the

different polytopes in the (newly) first set. (This is why ∂
(n)
i is a morphism in Kl(−./) rather

than in PolyCpx.) We define the morphism σ
(n)
i : fnC fn+1C to be the morphism of Kl(−./)

given by the polytope functor which repeats the i-th stage. For i ≤ 0 we define the morphisms

σ
(n)
i : fnC fnC and ∂

(n)
i : fnC fnC to be the identity on fnC. Note that the only one of these

morphisms that does not come from PolyCpx is ∂
(n)
1 .

Definition 4.4.1. Let snC =
∨n
i=1 fiC. We define simplicial structure maps between these by

∂0 = (0 : fnC sn−1C) ∨
n−1∨
i=1

(1 : fiC fiC),

where 0 is the polytope functor sending everything to the initial object ∅,

∂i =
n∨
i=1

∂
(j)
n−j+i for i ≥ 1,

and

σi : snC sn+1C =
n∨
j=1

σ
(j)
n−j+i for i ≥ 0.

It is easy to see that with the ∂i’s as the face maps and the σi’s as the degeneracy maps, s•C
becomes a simplicial polytope complex.

Putting proposition 4.3.5 together with proposition 4.2.4 we see that we have an exact equiva-
lence LnSC(C)

∏n
m=1 SC(fmC). However,

∏n
m=1 SC(fmC) is exactly equivalent to SC(

∨n
m=1 fmC) =

SC(snC). Thus we have proved the following:

Corollary 4.4.2. Let Hm : SC(fmC) W̃mSC(C) be the functor in proposition 4.2.4, ιm :

W̃mSC(C) WmSC(C) be the natural inclusion, and CPn be the functor from proposition 4.3.5.
Then Fn = CPn ◦ (

∏n
m=1 ιm ◦Hm) is an exact equivalence of categories.

Now we know that L•SC(C) is a simplicial Waldhausen category, and SC(s•C) is a simplicial
Waldhausen category. F• is a levelwise exact equivalence; we would like to show that it commutes
with the simplicial maps, and therefore assembles to a functor of simplicial Waldhausen categories.
This will allow us to conclude that the two constructions give equivalent K-theory spectra, and
thus that we can work directly with the SC(s•C) definition.

Proposition 4.4.3. The functor F• : SC(s•C) L•SC(C) is an exact equivalence of simplicial
Waldhausen categories.

Proof. First we will show that F• is, in fact, a functor of simplicial Waldhausen categories. In
particular, it suffices to show that the following two diagrams commute for each i:
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SC(snC) SC(sn+1C)

LnSC(C) Ln+1SC(C)

σi

Fn+1

σi

Fn

and

SC(snC) SC((sn−1C)./) SC(sn−1C)

LnSC(C) Ln−1SC(C)

∂i νsn−1C

Fn Fn−1

∂i

where the first diagram is a square because all σi’s come from morphisms in PolyCpx. Both of
these diagrams commute by simple computations, since Fn takes ”levelwise unions”.

Now by corollary 4.4.2 we know that levelwise Fn is an exact equivalence of Waldhausen cate-
gories. In addition, propositions 4.3.5 and 4.2.4 give us formulas for the levelwise inverse equiva-
lences; an analogous proof shows that these also assemble into a functor of simplicial Waldhausen
categories. Thus F• is an equivalence of simplicial Waldhausen categories, as desired.

Suppose that C• is a simplicial polytope complex. We define the K-theory spectrum of C• by

K(C•)n =
∣∣∣NwS(n)

• SC(C•) : (∆op)n+2 Sets
∣∣∣ .

(Note that this definition is compatible with the K-theory of a polytope complex, if we consider a
polytope complex as a constant simplicial complex.)

Lemma 4.4.4. K(C•) is a spectrum, which is an Ω-spectrum above level 0.

In the proof of this lemma we use the following obvious generalization of lemma 5.2 in [22].
A fiber sequence of multisimplicial categories is a sequence which is a fibration sequence up to
homotopy after geometric realization of the nerves.

Lemma 4.4.5. ([22], 5.2) Let

X• • • Y• • • Z• • •

be a diagram of n-simplicial categories. Suppose that the following three conditions hold:

• the composite morphism is constant,

• Z• • •m is connected for all m ≥ 0, and

• X• • •m Y• • •m Z• • •m is a fiber sequence for all m ≥ 0.

Then X• • • Y• • • Z• • • is a fiber sequence.

We now prove lemma 4.4.4.
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Proof of lemma 4.4.4. Suppose that X··· is an n-simplicial object; we will write PX• • • for the n-
simplicial object in which PXm1···mn = X(m1+1)m2···mn .

Consider the following sequence of functors.

wS1S
(n−1)
• SC(C•) PwS(n)

• SC(C•) wS(n)
• SC(C•),

where the first functor is the constant inclusion as the 0-space, and the second is the contraction
induced by ∂0 on the outermost simplicial level. As S0E is constant for any Waldhausen category
E , the composite of the diagram is constant. Similarly, for any m ≥ 0 wS(n)

• SC(Cm) is connected,
as if we plug in 0 to any of the S•-directions we get a constant category. In addition, by proposition
1.5.3 of [23], this is a fiber sequence if n ≥ 2. Thus by lemma 4.4.5 for n+ 1-simplicial categories,
the original diagram was a fiber sequence.

As S1E = E for all Waldhausen categories E , this fiber sequence gives us, for every n ≥ 2, an
induced map K(C•)n−1 ΩK(C•)n which is a weak equivalence. It remains to show that we have
a morphism K(C•)0 ΩK(C•)1. Considering the above sequence for n = 1 we have

wS1SC(C•) PwS•SC(C•) wS•SC(C•).

While the third criterion from lemma 4.4.5 no longer applies, the composition is still constant and
PwS•SC(C•) is still contractible, so we have a well-defined (up to homotopy) morphismK(C•)0 K(C•)1,
as desired.

For all n L•SC(C•) is a simplification of S•SC(C•), so K(C•)n = |NwL(n)
• SC(C•)|. Now let

K̃(C•)n =
∣∣∣NwSC(s(n)

• C•) : (∆op)n+2 Sets
∣∣∣ .

(This is clearly a spectrum, as the proof of 4.4.4 translates directly to this case.) By proposition
4.4.3 we have a morphism K̃(C•) K(C•) induced by F•, which is levelwise an equivalence (and
thus an equivalence of spectra). In particular we can take K̃(C•) to be the definition of the K-theory
of a simplicial polytope complex.

The main advantage of passing to simplicial polytope complexes is that it allows us to start the
S•-construction at any level, and thus compute deloopings of our K-theory spectra on the polytope
complex level.

Corollary 4.4.6. Let C• be a simplicial polytope complex, and let σC• be the simplicial polytope
complex with

(σC•)k = skCk.

Then ΩK(σC•) ' K(C•).

Proof. Geometric realizations on multisimplicial sets simply look at the diagonal, so

K̃(C•)n =
∣∣∣[k] 7−→ NwSC(sk

(n)Ck)
∣∣∣ .

Thus

K̃(σC•)n =
∣∣∣[k] 7−→ NwSC(sk

(n)(skCk))
∣∣∣ =

∣∣∣[k] 7−→ NwSC(sk
(n+1)Ck)

∣∣∣ = K̃(C•)n+1.

Thus K̃(σC•) is a spectrum which is a shift of K̃(C•), so K̃(C•) ' ΩK̃(σC•). As K̃(C•) ' K(C•), the
desired result follows.
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Using this corollary we can compute a polytope complex model of every sphere. From the
examples in section 3.3 we know that the polytope complex S = ∅ ∗ has K(S) equal to the
sphere spectrum (up to stable equivalence). In order to get S1 we need to deloop S. Note that
fnS = S for all n, so snS = S∨n. So the simplicial polytope complex which gives S1 on K-theory is

(S∨0,S∨1,S∨2, . . . ,S∨n, . . .).

Since fn(C ∨ D) = fnC ∨ fnD we know that fnS∨m = S∨m, so we compute that the simplicial
polytope complex which gives S2 on K-theory is

(S∨0,S∨1,S∨22
,S∨32

, . . . ,S∨n
2
, . . .).

In general we obtain Sk as the K-theory of

(S∨0k ,S∨1k , S∨2k , S∨3k , . . . ,S∨n
k
, . . .).

Note that in fact this works for k = 0 as well, as long as we interpret 00 to be 1.

4.5 Cofibers

Waldhausen’s cofiber lemma (see [23], corollary 1.5.7) gives the following formula for the cofiber of
a functor G : E E ′. We define SnG to be the pullback of the diagram

SnE
SnG

SnE ′
∂0

Sn+1E ′.

Define K(S•G) by

K(S•G)n =
∣∣∣wS(n)

• S•G
∣∣∣ .

Then the sequence K(E) K(E ′) K(S•G) is a homotopy cofiber sequence.

Our goal for this section is to compute a version of this for polytope complexes.

Definition 4.5.1. Let g : C D be a morphism in Kl(−./). We define D/g to be the simplicial
polytope complex with (D/g)n = fn+1D ∨ snC and the following structure maps. For all i > 0,
∂i : (D/g)n (D/g)n−1 is induced by the two morphisms

∂
(n+1)
i+1 : fn+1D fnD and ∂i : snC sn−1C•

Similarly, for all i ≥ 0, σi : (D/g)n (D/g)n+1 is induced by the morphisms

σ
(n+1)
i+1 : fn+1D fn+2D and σi : σnC σn+1C•

∂0, on the other hand, is induced by the three morphisms

∂
(n+1)
1 : fn+1D fnD fng : fnC fnD 1 : sn−1C sn−1C•

When g is clear from context we will often write D/C instead of D/g. For every n ≥ 0 we have
a diagram of polytope complexes

D (D/g)n snC
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given by the inclusion D fn+1D (as the constant objects) and the projection down to snC. Then
SC(D/g) is the pullback of

SC(s•C)
SC(s•g)

SC(s•D)
∂0

PSC(s•D),

which exactly mirrors the construction of S•G. (This is clear from an analysis of S•SC(g) analogous
to that of section 4.3.) In particular we have from [23] proposition 1.5.5 and corollary 1.5.7 that

wS(n)
• SC(C) wS(n)

• SC(D) wS(n)
• SC(D/g) wS(n)

• SC(s•C)

is a fiber sequence of n+ 1-simplicial categories.

Generalizing this to simplicial polytope complexes, we have the following proposition.

Proposition 4.5.2. Let g• : C• D• be a morphism of simplicial polytope complexes, and write
(D/g)• for the simplicial polytope complex where (D/g)n = (Dn/gn)n. Then we have a cofiber
sequence of spectra

K(C•) K(D•) K((D/g)•),

where the first map is induced by g•, and the second is induced for each n by the inclusion Dn (Dn/gn)n
as the constant objects of fn+1Dn.

Proof. As all cofiber sequences in spectra are also fiber sequences, it suffices to show that this is
a fiber sequence. As homotopy pullbacks in spectra are levelwise (see, for example, [12], section
18.3), it suffices to show that for all n ≥ 0, K(C•)n K(D•)n K((D/g)•)n is a homotopy fiber
sequence. However, as we know that above level 0 all of these are Ω-spectra it in fact suffices to
show this for n > 0.

Thus in particular we want to show that for all n > 0 the sequence

wS(n)
• SC(C•) wS(n)

• SC(D•) wS(n)
• SC((D/g)•)

is a homotopy fiber sequence of n + 1-simplicial categories. Let D•/g• be the bisimplicial polytope
complex where the (k, `)-th polytope complex is (Dk/gk)`. It will suffice to show that

wS(n)
• SC(D•) wS(n)

• SC(D•/g.) wS(n)
• SC(s•C•)

is a fiber sequence of n+ 2-simplicial categories (where D• is now considered a bisimplicial polytope
complex); in this diagram the second morphism is induced by the projection (Dk/gk)` s`Ck for
all pairs (k, `). Then by comparing this sequence for the functor 1 : C• C• to the functor g• we
will be able to conclude the desired result. (In this approach we follow Waldhausen in [23], 1.5.6.)

We show this by applying lemma 4.4.5, where we fix the index of the simplicial direction of C•
and D•. The composition of the two functors is constant, as we first include D• and then project
away from it, and as we do not fix any of the S• indices the last space will be connected. Thus we
want

wS(n)
• SC(Dk) wS(n)

• SC(Dk/gk) wS(n)
• SC(s•Ck)

to be a fiber sequence, which holds by our discussion above. So we are done.
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4.6 Wide and tall subcategories

We now take a slight detour into a more computational direction. Consider the case of a polytope
complex D, together with a subcomplex C. We know that the inclusion C D induces a map
K(C) K(D). The goal of this section is to give sufficient conditions on C which will ensure that
this map is an equivalence.

We start off the section with an easy computational result which will make later proofs much
simpler.

Lemma 4.6.1. For any object Y ∈ wSC(C), (Y ↓ wSC(C)) is a cofiltered preorder.

Proof. In order to see that (Y ↓ wSC(C) is a preorder it suffices to show that given any diagram

A ∼
f

Y ∼
g

B

in wSC(C) there exists at most one morphism A ∼ B that makes the diagram commute. This
diagram is represented by a diagram in Tw(Cp)

Y ′ Y ′′

A Y B
σ

τp q

where σ and τ are isomorphisms. Then morphisms h : A B such that g = hf correspond
exactly to factorizations of q through p; as (Tw(Cp)Sub ↓ T ) is a preorder, there is at most one of
these and we are done.

Thus it remains to show that this preorder is cofiltered; in particular, we want to find an object
below A and B under Y . Given a shuffle σ′, let fσ′ ∈ SC(C) be the pure shuffle defined by σ′;
similarly, for a sub-map p′ let fp

′ ∈ SC(C) be the pure sub-map defined by p′. Let Z = Y ′ ×Y Y ′′
be the vertical pullback of p and q. Then, the pullback of

A
σ−1

Y ′ Z

gives a weak equivalence A ∼ Z, and analogously we have a weak equivalence B ∼ Z. As these
commute under Y we see that (Y ↓ wSC(C)) is cofiltered, as desired.

The first condition that we need in order to have an equivalence on K-theory is that we must
have the same K0; more specifically, we need every object of SC(D) to be weakly equivalent to
something in SC(C). As a condition on polytope complexes, this turns into the following definition.

Definition 4.6.2. Suppose that D is a polytope complex and C D is an inclusion of polytope
complexes. We say that C has sufficiently many covers if for every object B ∈ D there exists a
finite covering family {Bα B}α∈A such that the Bα are pairwise disjoint, and such that every
Bα is horizontally isomorphic to an object of C.

Our first approximation result is almost obvious: if we cover all weak equivalence classes of
objects, and all morphisms between these objects, then we must have an equivalence on K-theory.
More formally, we have the following:

Lemma 4.6.3. Suppose that C has sufficiently many covers, and that SC(C) sits inside SC(D) as
a full subcategory. Then the induced map |wSC(C)| |wSC(D)| is a homotopy equivalence.
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Proof. Using Quillen’s Theorem A (from [17]) it suffices to show that for all Y ∈ wSC(D) the
category (Y ↓ wSC(C)) is contractible. Now as (Y ↓ wSC(D)) is a preorder (by lemma 4.6.1) and
SC(C) is a subcategory of SC(D), we know that (Y ↓ wSC(C)) is also a preorder; thus to show
that it is contractible we only need to know that it is cofiltered. In addition, as SC(C) is a full
subcategory of SC(D), it in fact suffices to show that we have enough objects for it to be cofiltered,
so it suffices to show that this category is nonempty for all Y .

So let us show that for all Y ∈ wSC(D) the category (Y ↓ wSC(C)) is nonempty. We need to

show that for any Y ∈ wSC(D) there exists a Z ∈ wSC(C) an a weak equivalence Y ∼ Z. Write

Y = {yi}i∈I . For each i ∈ I, let {y(i)
α yi}α∈Ai be the cover guaranteed by the sufficient covers

condition, and let β
(i)
α : y

(i)
α z

(i)
α be the horizontal isomorphisms guaranteed by the sufficient

covers condition. Then the induced vertical morphism {y(i)
α }i∈I,α∈Ai {yi}i∈I is a covering sub-

map and the vertical morphism β : {y(i)
α }i∈I,α∈Ai {z(i)

α }i∈I,α∈Ai is a horizontal isomorphism, so

the morphism in SC(D) represented by this is a weak equivalence. But by definition {z(i)
α }i∈I,α∈Ai

is in SC(C), so we are done.

In the statement of the previous lemma we had two conditions. One was a condition on C,
and one was a condition on SC(C). We would like to get those conditions down to conditions just
about C, as that will make using this kind of results easier. In order for a morphism of SC(D)
to be in SC(C) we need some representative of the morphism to come from a diagram in Tw(C);
in particular, this means that both the representing object, and the morphisms which are the
components of the vertical and horizontal components, must be in C.

If C is not a full subcomplex of D then much of this analysis becomes much more difficult, so
for the rest of this section we will assume that C is a full subcomplex of D. This means that as long
as we know that a representing object of the morphism is in Tw(C), it is sufficient to conclude that
the morphism will be in SC(C). In particular, we want to be able to conclude that just because
the source and target of a morphism are in SC(C) then the morphism must be, as well. We can
translate this into the following condition.

Definition 4.6.4. Suppose that C is a full subcomplex of D. We say that C is wide (respectively,
tall if for any horizontal (resp. vertical) morphism A B ∈ D, if B is in C then so is A.

If C is a full subcomplex of D then we know that Tw(C) is a full subcategory of Tw(D). If
C happens to also be wide, we know something even stronger: given any horizontally connected
component of Tw(D), either that entire component is in Tw(C), or nothing in the component is in
Tw(C). Analogously, if C is tall we can say the same thing for vertically connected components.
This lets us conclude that SC(C) is a full subcategory of SC(D).

Lemma 4.6.5. Let C be a full subcomplex of D. If C is wide or tall then SC(C) is a full subcategory
of SC(D).

Proof. Let {ai}i∈I , {bj}j∈J ∈ SC(C), and let f : {ai}i∈I {bj}j∈J be a morphism in SC(D). This
morphism is represented by a diagram

{ai}i∈I
p
{a′k}k∈K

σ {bj}j∈J

In order for f to be in SC(C) it suffices to show that each a′k is in C, as C is a full subcategory of D.
Now if C is wide then for all k ∈ K we have a horizontal morphism Σk : ak bσ(k). As C is wide
and each bj ∈ C we must have a′k ∈ C for all k. So SC(C) is a full subcategory of SC(D). If, on
the other hand, C is tall then for each k ∈ K we consider the vertical morphism Pk : a′k ap(k).
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As ai ∈ C for all i ∈ I we must also have a′k ∈ C for all k′ ∈ K. So SC(C) is a full subcategory of
SC(D), and we are done.

Which leads us to the following approximation result.

Proposition 4.6.6. Suppose that C is a subcomplex of D with sufficiently many covers. If C is
wide or tall, the inclusion C D induces an equivalence K(C) K(D).

Proof. Lemma 4.6.3 shows that K(C)i K(D)i is an equivalence for i = 0. If we can show that
for all n, snC is a wide or tall subcomplex of snD with sufficiently many covers we will be done, as
we will be able to induct on i to see that the induced morphism is an equivalence on all levels. In
fact, note that it suffices to show that fnC is a wide (resp. tall) subcomplex of fnD with sufficiently
many covers.

First we show that fnC has sufficiently many covers in fnD. Consider an object D

D1 · · · Dn

of fnD. As C has sufficiently many covers in D there exists a covering family {Bα Dn}α∈A of
Dn in which every object is horizontally isomorphic to an object of C. Given an object X ∈ D, let
X ∈ fnD be the constant object where Xk = {X}. Then the family {Bα D}α∈A is a covering
family of D. As each Bα was horizontally isomorphic to an object in C, each Bα is horizontally
isomorphic to something in fnC, and we are done.

The fact that if C was a tall (resp. wide) subcomplex of D then fnC is a tall (resp. wide)
subcomplex of D follows directly from the definition of fnC and fnD.

Finally, we can generalize this result to simplicial polytope complexes.

Corollary 4.6.7. Suppose that C• D• is a morphism of simplicial polytope complexes. If for
each n, the morphism Cn Dn is an inclusion of Cn as a subcomplex into Dn and satisfies the
conditions of lemma 4.6.6, then the induced map K(C•) K(D•) is an equivalence.

We finish up this section with a couple of applications of this result.

More explicit formula for suspensions and cofibers.

For any polytope complex C and any positive integer n we have a polytope functor C fnC given
by including and object a as the constant object

a = {a} {a} · · · {a}

This includes C as a wide subcomplex of fnC. In fact, C also has sufficiently many covers. Given
any object

A = A1 A2 · · · An,

write An = {ai}i∈I . Then the family {ai A}i∈I is a covering family, and each ai ∈ C. Thus we
have an inclusion C∨n snC which induces an equivalence on K-theory.

In fact, this is an equivalence on the K-theory of simplicial polytope complexes, as this inclusion
commutes with the simplicial structure maps. Thus s•C can be considered to be a bar construction
on C, as the structure maps of s•C, when restricted to the constant objects, exactly mirror the
morphisms of the bar construction. (The 0-th face map forgets the first one, the next n − 1 glue
successive copies of C together, and the n-th one forgets the last one, exactly as the bar construction
does. The degeneracies each skip one of the C’s in sn+1C.)

Generalizing to simplicial polytope complexes, this gives the following simplifications of the
formulas for σC• and (D/g). from corollary 4.4.6 and proposition 4.5.2:

59



Corollary 4.6.8. Let g : C• D• be a morphism of simplicial polytope complexes. Let σC• and
(D/g). be the simplicial polytope complexes defined by

(σC•)n = C∨nn and (D/g)n = Dn ∨ C∨nn .

Then ΩK(σC•) ' K(C•) and

K(C•) K(D•) K((D/g).)

is a cofiber sequence of spectra.

It is necessary to check that these inclusions commute with the simplicial maps, but it is easy
to see that they do. Note that on (D/g)n, ∂0 is induced by the three morphisms

∂0 : Dn Dn−1 g∂0 : Cn Dn−1 ∂∨n−1
0 : C∨n−1

n C∨n−1
n−1 .

Local data on homogeneous manifolds.

Let X be a geodesic n-manifold with a preferred open cover {Uα}α∈A such that for any α ∈ A
and any two points x, y ∈ Uα there exists a unique geodesic connecting x and y. (For example,
X = En, Sn, or Hn are examples of such X. In the first and third case we take our open cover
to be the whole space; in the second case we take it to be the set of open hemispheres.) We then
define a polytope complex CX in the following manner. Define a simplex of X to be a convex hull
of n+1 points all sitting inside some Uα with nonempty interior, and a polytope of X to be a finite
union of simplices. We then define CXv to be the poset of polytopes of X under inclusion with the
obvious topology. Given two polytopes P and Q, we define a local isometry of P onto Q to be a
triple (U, V, ϕ) such that U and V are open subsets of X with P ⊆ U and Q ⊆ V , ϕ : U V is
an isometry of U into V , and ϕ(P ) = Q. Then we define a horizontal morphism P Q to be an
equivalence class of local isometries of P onto Q, with (U, V, ϕ) ∼ (U ′, V ′, ϕ′) if ϕ|U∩U ′ = ϕ′|U∩U ′ .
Under these definitions it is clear that CX is a polytope complex.

Now let U ⊆ X be any preferred open subset of X with the preferred cover {U}. Then CU is
also a polytope complex and we have an obvious inclusion map CU CX .

Lemma 4.6.9. If X is homogeneous then the inclusion CU CX induces an equivalence K(CU ) K(CX).

Proof. Clearly CU is a tall subcomplex of CX . Given any polytope P ⊆ CX we can triangulate it
by triangles small enough to be in a single chart. Once we are in a single chart we can subdivide
each triangle by barycentric subdivision until the diameter of every triangle in the triangulation is
small enough that the triangle can fit inside U . As X is homogeneous there is a local isometry of
any such triangle into U , and thus CU has sufficiently many covers. Thus by proposition 4.6.6 the
induced map K(CU ) K(CX) is an equivalence.

Any isometry X Y which takes preferred open sets into preferred open sets induces a
polytope functor CX CY (which is clearly an isomorphism). Thus the statement of proposition
1.0.4 is exactly that all morphisms in the diagram

CX CU
Cϕ CV CY

are equivalences, which follows easily from the above lemma.
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Non-examples

We conclude this section with a couple of non-examples. First, take any polytope complex C and
consider the polytope complex C ∨ C. C sits inside this (as the left copy, for example) and is tall
by definition, but the K-theories of these are not equivalent as the left copy of C does not contain
sufficiently many covers. (In particular, it can’t cover anything in the right copy of C.) However,
if we added “twist” isomorphisms — horizontal isomorphisms between corresponding objects in
the left and right copies of C — then the left C would contain sufficiently many covers, and the
K-theories of these would be equal.

As our second non-example we will look at ideals of a number field. Let K be a number field
with Galois group G. Let the objects of C be the ideals of K. We will have a vertical morphism
I J whenever I|J , and we will have our horizontal morphisms induced by the action of G. The
K-theory of this will be countably many spheres wedged together, one for each prime power ideal
of K. (See section 3.3.5 for a more detailed exploration of this example.) The prime ideals sit
inside C as a wide subcomplex, but they do not give an equivalence because if pk is a prime power
ideal for k > 1 then it can’t be covered by prime ideals. The K-theories of these two will in fact
be equivalent, since they are both countably many spheres wedged together, but the inclusion does
not induce an equivalence.

4.7 Proof of lemma 4.3.3

This section concerns the proof of lemma 4.3.3:

Lemma 4.3.3. LnSC(C) is a Waldhausen category. The cofibrations (resp. weak equivalences)
in LnSC(C) are exactly the morphisms which are levelwise cofibrations (resp. weak equivalences).
LnSC(C) is a simplification of FnSC(C).

A morphism A B ∈ FnSC(C) is represented by a diagram

A1 A2 · · · An

B1 B2 · · · Bn

and by lemma 4.3.2(1) will be layered exactly when for each i = 1, . . . , n− 1 the diagram

Ai/Ai−1 Ai

Bi/Bi−1 Bi

commutes. As each square is considered separately, for all of the proofs in this section we will
assume that n = 2, as for all other values of n the proofs will be equivalent, and it saves on having
an extra variable floating around.

Lemma 4.7.1. Any layered morphism which is levelwise a cofibration is a cofibration.
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Proof. We want to show that if

f1, f2 : (A1
i

A2) (B1
j

B2)

is layered, then the induced morphism ϕ : A2 ∪A1 B1 B2 is a cofibration. We know that
A2 ∪A1 B1

∼= (A2/A1)qB1, and that ϕ = j q (f2/f1) (where the second part follows directly from
the layering condition). Thus it suffices to show that f2/f1 is a cofibration. This follows from
the more general statement that in SC(C), given two composable morphisms g, h, if h and hg are
cofibrations then so is g. As A2/A1 B2 and B2/B1 B2 are both cofibrations, it follows that
f2/f1 must be one as well.

Now we turn our attention to showing that LnSC(C) is a simplification of FnSC(C). We first
develop a little bit of computational machinery for layering, which will allow us to work with
cofibrations more easily.

Given any object A = {ai}i∈I ∈ SC(C), we say that A′ is a subobject of A if A′ = {ai}i∈I′
for some subset I ′ ⊆ I. If A′, A′′ are two subobjects of A, we will write A′ ∩ A′′ for {ai}i∈I′∩I′′ ,
and we will write A′ ⊆ A′′ if I ′ ⊆ I ′′. Suppose that f : A B is a morphism in SC(C).
Pick a representation of this by a sub-map p and a shuffle σ, and write B = {bj}j∈J . Then
imBA = {bj}j∈imσ. Note that this agrees with the previous definition of image when f is a
cofibration, and imBA is a subobject of B. If we write A = A1qA2 then A1 and A2 are subobjects
of A, and imBA = imBA1 ∪ imBA2. If f were a cofibration, we also have imBA1 ∩ imBA2 = ∅; if
f were a weak equivalence then imBA = B. (For example, imBA ∩ (B/A) = ∅.) Given a second
morphism g : B C, imCA ⊆ imCB.

Now consider a commutative square

f1, f2 : (A1 A2) (B1 B2).

This square satisfies the layering condition exactly when

imB2(A2/A1) ⊆ imB2(B2/B1) = B2/B1,

or equivalently when imB2(A2/A1)∩imB2B1 = ∅. We will use this restatement in our computations.

Lemma 4.7.2. Cofibrations are layered.

Proof. If A B is a cofibration, then by definition A2∪A1 B1 B2 is a cofibration. But we have

an acyclic cofibration (A2/A1)qB1
∼ A2 ∪A1 B1, so imB2(A2/A1) ∩ imB2B1 = ∅, as desired.

Lemma 4.7.3. Layered morphisms are closed under pushouts. More precisely, given any commu-
tative square

A B

C D

in which all morphisms are layered, the induced morphisms

C B ∪A C B B ∪A C B ∪A C D

are all layered.
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Proof. The first of these is clearly layered as it is a cofibration.
Write Xi = Bi ∪Ai Ci. Keep in mind that for all i, we have an acyclic cofibration (Bi/Ai) q

Ci ∼ Xi.
For the second, we need to show that imX2(B2/B1) ∩ imX2(X1) = ∅. We have

imX2(B2/B1) ∩ imX2X1 = imX2(B2/B1) ∩ (imX2C1 ∪ imX2(B1/A1))

= (imX2(B2/B1) ∩ imX2C1) ∪ (imX2(B2/B1) ∩ imX2(B1/A1)).

Consider the first of the two sets we are unioning. By the definition of X2, imX2C2 ∩ imX2B2 =
imX2A2. Thus

imX2(B2/B1) ∩ imX2C1 ⊆ imX2(B2/B1) ∩ imX2C2 ⊆ imX2A2.

On the other hand,

imX2(C1) ∩ imX2(A2) = imX2(imC2C1 ∩ imC2A2) = imX2(imC2A1) = imX2A1

as A C is layered. Thus we want to show that imX2(B2/B1) ∩ imX2A1 = ∅. It suffices to
show this inside B2, where it is obvious. Now consider the second part. As B1/A1 X2 and
B2/B1 X2 both factor through B2, it suffices to show that (B2/B1) ∩ imB2(B1/A1) = ∅, which
is clear by definition.

It remains to show that the last of these morphisms is layered. In particular, we need to show
that

imD2(X2/X1) ∩ imD2(D1) = ∅.

But it is easy to see that

imD2(X2/X1) ∩ imD2(D1) = imD2((C2 qB2/A2)/(C1 qB1/A1)) ∩ imD2(D1)

= imD2(C2/C1 q (B2/A2)/(B1/A1)) ∩ imD2(D1)

= (imD2(C2/C1) ∩ imD2(D1)) ∪
∪ (imD2((B2/A2)/(B1/A1)) ∩ imD2(D1)).

the first of these is empty because C D is layered. The second is empty because imD2((B2/A2)/(B1/A1)) ⊆
imD2(B2/B1), and the intersection of this with imD2(D1) is empty because B D is layered. So
we are done.

Now we are ready to prove lemma 4.3.3.

Proof of lemma 4.3.3. Firstly we will show that all weak equivalences of FnSC(C) are layered. In
particular, it suffices to show that any weak equivalences of FnSC(C) is also a cofibration, since
we already know by lemma 4.7.2 that all cofibrations are layered. In particular, if we have a a
commutative square

(A1 A2) ∼ (B1 B2)

we want to show that the induced morphism A2∪A1B1 B2 is a cofibration. As weak equivalences

are preserved under pushouts we know that A2
∼ A2∪A1B1 is a weak equivalence, as is A2

∼ B2.
As weak equivalences in SC(C) satisfy 2-of-3 in this direction we are done (see lemma 3.4.8).

All morphisms A ∗ are in LnSC(C), as these are trivially layered. As lemma 4.7.3 showed
that LnSC(C) is closed under pushouts, we see that LnSC(C) is, in fact, a simplification of FnSC(C).
Weak equivalences of LnSC(C) are levelwise because weak equivalences in FnSC(C) are levelwise,
and cofibrations are levelwise by lemma 4.7.1.
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Chapter 5

Further structures on PolyCpx

5.1 Two Symmetric Monoidal Structures

5.1.1 Cartesian Product

Our goal is to create a polytope complex to mirror the tensor product of abelian groups and the
smash products of symmetric spectra. If we think of a finite pairwise-disjoint covering family
{Ai A}i∈I as representing the equation [A] =

∑
i∈I Ai, then polytope functors exactly represent

additive functions between scissors congruence groups. Thus our first step is to create a polytope
complex that can represent “bilinear maps” out of a pair of polytope complexes.

Definition 5.1.1. Given two polytope complexes C,D we define the product complex C ×D to be
the polytope complex whose underlying category is C ×D, and whose topology is the “orthogonal”
product topology. Specifically, the topology is generated by the coverage given by families

{Ai ×Bj A×B}(i,j)∈I×J

for all covering families {Ai A}i∈I and {Bj B}j∈J in C and D, respectively.

(For the details of the definition of a coverage see [11].)

It is easy to check that C × D is, in fact, a polytope complex. The only axiom that causes any
trouble is axiom (E): showing that if a covering family {Xα X}α∈A has Xβ = ∅ for some β ∈ A
then {Xα X}α∈A\{β} is also a covering family. As any covering family in the pretopology is
generated by finitely many refinements in the coverage (and as ∅ × ∅ has no nontrivial covering
families) it suffices to show that we can remove ∅ × ∅ from any family in the coverage. In order to
show this we in fact need two refinements, and the required family will be a covering family in the
pretopology associated to the coverage, but not actually in the coverage.

Lemma 5.1.2. If {Xα×Yβ X×Y }(α,β)∈A×B is a covering family in the topology of C ×D with

Xα′×Yβ′ = ∅×∅ for some α′ ∈ A and β′ ∈ B then the family {Xα×Yβ X×Y }(α,β)∈A×B\{(α′,β′)
is also a covering family.

Proof. As Xα′ = ∅ we can apply (E) to the covering family {Xα X}α∈A to conclude that
{Xα X}α∈A\{α′} is also a covering family. To get the desired family we will refine the covering

family {X × Yβ X × Y }β∈B. For all β 6= β′, cover X × Yβ by the covering family {Xα ×
Yβ X×Yβ}α∈A, and cover X×∅ by {Xα×∅ X×∅}α∈A\{α′}. This will be a covering family,
and will contain all Xα × Yβ for (α, β) ∈ A×B\{(α′, β′)}.
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Let I be the polytope complex with no noninitial objects. For all polytope complexes C,
C × I ∼= I × C ∼= C.

Lemma 5.1.3. We have a functor × : PolyCpx×PolyCpx PolyCpx defined as (C,D) C×
D which gives a symmetric monoidal structure (PolyCpx, · × ·, I, α, γ, λ, ρ).

Proof. We make the following definitions:

αC,D,E the polytope functor (C × D)× E C × (D × E) defined by taking the pair (A, (B,C)) to
the pair ((A,B), C), and analogously on morphisms.

γC,D the polytope functor C × D D × C which takes the pair (A,B) to the pair (B,A).

λC the functor which takes an object (A, ∅) to A.

ρC the functor which takes an object (∅, A) to A.

It is clear from the definitions that these satisfy the desired diagrams for a symmetric monoidal
structure, assuming that they are well-defined polytope functors for every C,D, E . As pullbacks are
defined coordinatewise it is clear that all of these preserve pullbacks; all that we need to show is that
they are vertically continuous. In order to do this it suffices to show that they take any covering
family in the generating coverage to another covering family. However, this is a definition check:
note that if {Xα×(Yα×Zα) X×(Y ×Z)}α∈A is a covering family then we must be able to write
A = A1×A2×A3 such that this family is equal to the family {Xα1×(Yα2×Zα3) X×(Y×Z)}αj∈Aj
in such a way that when restricted to any coordinate we have a covering family. But in that case
we can write the indexing set for the covering family {(Xα × Yα)× Zα (X × Y )× Z}α∈A in an
analogous way, so this will also be a covering family. γ is done analogously.

Remark. Note that each of C and D include into C × D as the subcomplexes C × I and I × D,
respectively. Thus the functor · × · has a subfunctor (C,D) C ∨ D; in fact, it is easy to check
that (PolyCpx, · ∨ ·, I, α, γ, λ, ρ) is also a symmetric monoidal structure on PolyCpx.

It may seem that the product complex C × D classifies bilinear maps out of C and D, as the
topology is designed so that weak equivalences in SC(C ×D) are bilinear in C and D. And, indeed,
it is easy to check that (in many cases) K0(C × D) ∼= K0(C)⊗K0(D), as would be desired in such
a structure. (For more details, see example 5.1.6.) Unfortunately, functors out of C ×D are not, in
fact, “bilinear” functors: if we fix an A ∈ C the functor D C ×D given by D A×D is not a
polytope functor, as it does not take ∅ to ∅. If we ould somehow set all of these objects to equal ∅
this problem would be resolved; to do this we will develop a theory of “relative pairs” of polytope
complexes.

5.1.2 Initial Subcomplexes and Smash Products

A relative pair of complexes is, analogously to a relative pair of spaces, a polytope complex together
with a subcomplex. Our goal in studying such pairs is to be able to study the K-theory of the
“quotient complexes” we can form by collapsing the subcomplex into the initial object. In order
for such a collapse to be well-defined we need a couple of extra conditions on the subcomplexes we
allow in a relative pair.

Definition 5.1.4. Let C be a polytope complex and C′ a subcomplex. C′ is initial in C if, given any
(vertical or horizontal) morphism f : A B ∈ C, if B ∈ C′, so is f . We write a pair of a polytope
complex C together with an initial subcomplex C′ as (C, C′). A functor of pairs F : (C, C′) (D,D′)
is a polytope functor F : C D such that F (C′) ⊆ D′. We denote the category of such pairs by
RelPair.
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Equivalently, in the terminology of section 4.6, C′ is initial if and only if it is wide and tall.

We have an inclusion functor ι : PolyCpx RelPair given by C (C, I). This inclusion has
a left adjoint, a contraction functor c : RelPair PolyCpx. We can explicitly construct c(C, C′),
which we will generally write C\C′, as follows. C\C′ is the full subcomplex of C containing all objects
which are either (a) vertically initial or (b) not in C′. We will say that a family of morphisms
{Xα X}α∈A is a covering family if there exists a family of morphisms {Xβ X}β∈B with each
Xβ ∈ C′ such that {Xi X}i∈A∪B is a covering family in C. We also get c(F : (C, C′) (D,D′)) =
F |C\C′ .

Note that in C\C′ some objects may have empty covering families; see, for example, example
5.1.5.

Given a relative pair (C, C′) we have an induced inclusion of K-theories K(C′) K(C).
It is important to note that K(C\C′) is not necessarily the homotopy cofiber of the inclusion
K(C′) K(C). In order to emphasize this fact we use the notation C\C′ instead of the (perhaps
more natural) C/C′: in section 4.5 we used C/C′ to denote the polytope complex representing the
homotopy cofiber of the inclusion K(C′) K(C). Let us consider two examples:

Example 5.1.5. Recall that a subcomplex C′ C has sufficiently many covers if every object A ∈ C
has a covering family {Ai A}i∈I with Ai ∈ C′ for all i ∈ I. Suppose that (C, C′) is a relative pair

such that the inclusion C′ C has sufficiently many covers, so K(C′) ∼ K(C) (see proposition
4.6.6). In this case is K(C\C′) contractible, and thus is the homotopy cofiber of the inclusion
K(C′) K(C). To see this, it suffices to show that wSC(C\C′) has a terminal object: the usual 0
object {}. Note that for all {ai}i∈I ∈ SC(C\C′) for each i ∈ I we have a cover of ai by objects in C′,
so in particular {} {ai}i∈I is a covering sub-map. Thus the morphism {ai}i∈I 0 is a weak
equivalence, and wSC(C\C′) has a terminal object, and thus K(C\C′) is contractible, as desired.

Example 5.1.6. Now consider the inclusion induced from the pair (C × D, C ∨ D). (This is the
relative pair we will use to define the smash product of polytope complexes.) Assuming that the
two extra conditions

(a) K0(C)×K0(D) 6= 0, and

(b) for all objects A in C or D, the family {∅ A,A A} is a covering family,

hold, K(C × D\C ∨ D) will not be the homotopy cofiber of this inclusion. Indeed, using theorem
3.2.2 and condition (b) we can easily compute that K0(C×D) ∼= K0(C)⊗K0(D) ∼= K0(C×D\C∨D)
and the map K(C×D) K(C×D\C ∨D) induces an isomorphism between them. As K(C ∨D) '
K(C) ×K(D) 6= 0 by condition (a), the sequence K(C ∨ D) K(C × D) K(C × D\C ∨ D) is
not a homotopy cofiber sequence.

Suppose that (E ,⊗, α(, γ)) satisfies the pentagonal (and hexagonal) axiom of a (symmetric)
monoida category, but not any of the unit axioms. Then we say that ⊗ is a (symmetric) nonunital-
monoidal structure on E .

Lemma 5.1.7. Suppose that (RelPair, ·~·, α, (, γ)) is a (symmetric) nonunital-monoidal structure
on RelPair. If we define · ⊗ · = c(ι(·) ~ ι(·)), then we get a (symmetric) nonunital-monoidal
structure (PolyCpx,⊗, cαι(, cγι)).

⊗ is the symmetric nonunital-monoidal structure induced by ~.

Proof. We will show this for the pentagon axiom; the hexagon axiom follows analogously. Consider
the diagram
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((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D) A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

Note that this diagram is exactly c applied to the diagram

((ιA~ ιB)~ ιC)~ ιD (ιA~ ιB)~ (ιC ~ ιD)

(ιA~ (ιB ~ ιC))~ ιD) ιA~ ((ιB ~ ιC)~ ιD) ιA~ (ιB ~ (ιC ~ ιD))

which commutes because ~ is monoidal.

Now consider the functor Z : ((C, C′), (D,D′)) (C × D, C × D′ ∪ C′ × D). It is easy to check
that this is a functor RelPair×RelPair RelPair. Letting α, γ, λ, ρ be the stucture maps of
the symmetric monoidal category (PolyCpx,×, I), we can extend them to a symmetric monoidal
structure (RelPair,Z, (I, I), α, γ, λ, ρ).

We want to construct a monoidal structure on PolyCpx using this product in RelPair. Let ∧
be the symmetric nonunital-monoidal structure induced by Z. Note that we are going to need a new
unit, since C ×I ∼= C ∨I, and so the unit of Z will not be a unit once we pass it down to PolyCpx.
However, by applying lemma 5.1.7 we get associator and commutator natural isomorphisms, so
all that we will need in order to make this structure symmetric monoidal is a unit together with
natural transformations λ and ρ which make the necessary diagrams commute. It turns out that
the unit we want is exactly S; it remains to construct λ and ρ.

Consider the following two natural transformations: Λ: (S, I) Z · 1, and P : · Z (S, I) 1
defined as follows. For each relative pair (C, C′), Λ(C,C′) is the polytope functor that takes each
object of the form (∅, A) to ∅, and each object of the form (∗, A) to A. P is defined analogously.
With these definitions it is easy to see that for all pairs (C, C′) and (D,D′) we have

Λ(C,C′) ◦ γ(C,C′)S = PC and (1(C,C′) Z Λ(C,C′)) ◦ α(C,C′)S(D,D′) = P(C,C′) × 1(D,D′).

We define λ = cΛι and ρ = cPι.

Proposition 5.1.8. (PolyCpx, ·∧ ·,S, α, γ, λ, ρ) is a symmetric monoidal structure on PolyCpx.

Proof. All that remains to show here is to check that λ and ρ are natural isomorphisms, not just
natural transformations. (This needs to be checked because Λ and P were not natural isomorphisms
to start with.) However, it is easy to check that explicitly S∧C is exactly C where every object A is
replaced by a pair (∗, A) and every morphism is replaced by a pair where the first coordinate is the
identity morphism on ∗. On this λ peels off the first coordinate, which is clearly an isomorphism.
ρ is checked analogously.

To finish up this section we show that the smash product of polytope complexes preserves nice
inclusions of subcomplexes. In particular, the following lemma shows that the smash product of
polytope complexes preserves relative pairs of polytope complexes.

Lemma 5.1.9. Suppose that C D is an inclusion of polytope complexes and E is any polytope
complex. Then if the inclusion is wide (resp. tall, has sufficiently many covers) then so is the
induced inclusion C ∧ E D ∧ E.

68



Proof. First, suppose that the inclusion is wide. This means that for any horizontal morphism
A B ∈ D, if B ∈ C then so is A. Now consider any morphism A ∧ E B ∧ E′ ∈ D ∧ E . If
B ∧E′ ∈ C ∧ E this means that B ∈ C, which implies that A ∈ C and thus A ∧E ∈ C ∧ E ; thus the
inclusion is wide. Tallness is proved analogously.

Now suppose that C D has sufficiently many covers, and consider any object B ∧ E ∈
D ∧ E . We know that there exists a covering family {Bα B}α∈A in D such that for each Bα
there exists a horizontal morphism Cα Bα ∈ D with Cα ∈ C. But then the covering family
{Bα ∧ E B ∧ E}α∈A is a covering family of B ∧ E with the desired horizontal morphisms
Cα ∧ E Bα ∧ E. Thus the inclusion has sufficiently many covers, as desired.

5.2 The K-theory functor is monoidal

5.2.1 Waldhausen categories

The K-theory of a polytope complex is defined to be the following composition:

K : PolyCpx WaldCat Sp

C SC(C) K(C)

SC KWald

The goal of this section is to show that K is a lax symmetric monoidal functor. It would be
convenient if we could just show that each of KWald and SC are symmetric monoidal; however,
since WaldCat is not a symmetric monoidal category this is not possible. But WaldCat is a
symmetric multicategory, so for this section we will use the language of multicategories.

In order to show that K is a symmetric monoidal functor it suffices to show that both SC and
KWald are multifunctors. The fact that KWald is a multifunctor is well-known; for more details, see
2.3.7 in section 2.3.2. Thus it remains to show:

Lemma 5.2.1. SC is a multifunctor.

Proof. In order to show that SC is a multifunctor it suffices to give, for any k-tuple of polytope
complexes C1, . . . , Ck a k-exact functor ϕ : SC(C1)× · · · × SC(Ck) SC(C1 ∧ · · · ∧ Ck); then for any
k + 1-tuple C1, . . . , Ck,D and any polytope functor F : C1 ∧ · · · ∧ Ck → D we would get an induced
k-exact functor

SC(C1)× · · · × SC(Ck)
ϕ
SC(C1 ∧ · · · ∧ Ck)

SC(F )
SC(D).

Supposing that ϕ were natural in each of the Ci’s, this would show that SC is a multifunctor.
For any two polytope complexes C and D, consider the biexact functor

f : SC(C)× SC(D) SC(C ∧ D),

defined as follows: given an object A = {ai}i∈I ∈ SC(C) and an object B = {bj}j∈J ∈ SC(D) we
define A f B = {ai ∧ bj}(i,j)∈I×J . Morphisms are induced in the obvious manner. Thus for any
k-tuple of polytope complexes C1, . . . , Ck we have a k-exact functor

SC(C1)× · · · × SC(Ck)
∼=

((SC(C1)× SC(C2))× · · · )× SC(Ck)
((f) f · · · )f

SC(((C1 ∧ C2) ∧ · · · ) ∧ Ck)
∼=

SC(C1 ∧ · · · ∧ Ck).
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As each of the composed functors is natural in each of the Ci’s this gives the desired functor.
We also need to check that the multifunctor commutes with the Σk-action, but this is clear

since that simply permutes the Cj ’s in both the source and target.

Thus we have shown:

Proposition 5.2.2. K : PolyCpx Sp is lax symmetric monoidal.

We can now define rings and modules in polytope complexes.

Definition 5.2.3. A ring polytope complex is a polytope complex R together with polytope
functors µ : R∧R R and ι : S R such that

(R∧R) ∧R R ∧ (R∧R) R∧R

R∧R R

αRRR 1× µ

µ× 1

µ

µ

and

S ∧R R ∧R R∧ S

R

ι ∧ 1R 1R ∧ ι

λR ρR
µ

commute. If in addition we have a polytope functor τ : R ∧R R ∧R such that the µ ◦ τ = µ
then R is a commutative ring polytope complex.

As K is lax monoidal these diagrams commute in symmetric spectra with K(R) instead of R,
which means that for a ring polytope complex R its K-theory is a symmetric ring spectrum.

5.2.2 Γ-spaces

Recall that a Γ-space is a functor X : FinSet∗ sSets that takes {0} to the one-point simplicial
set. We can assign to a Γ-space a spectrum BΓ in the following manner. Let S1 be the pointed
simplicial set with one non-degenerate simplex in each of dimensions 0 and 1, and no other non-
degenerate simplices; we can identify the k-simplices of S1 with the set {0, 1, . . . , k}, which we
will write k+. In this, 0 will be the distinguished point. We can consider S1 to be a functor
∆op FinSet∗, so that X ◦ S1 is a bisimplicial set. Analogously, if we define Sn = (S1)∧n then
X ◦Sn will also be a bisimplicial set. BX is defined to be the spectrum whose n-th space is X ◦Sn.
In some cases, in particular the one we consider here, BX will be an Ω-spectrum above level 1.
(See [19] or [3] for more details.) For any finite pointed set A we will write A0 for the set A\{∗}.

Fix a polytope complex C. For any finite based space A, we will write SCA(C) for the full
subcategory of

∏
a∈A0

SC(C) consisting of all tuples of objects {{bj}j∈Ja}a∈A0 such that Ja∩Ja′ = ∅
for all distinct a, a′ ∈ A0. For any morphism ϕ : A→ A′ ∈ FinSet∗ we define a functor

SCA(C) SCA′(C)

{{bj}j∈Ja}a∈A0 {{bj}j∈⋃a∈ϕ−1(a′) Ja
}a′∈A′0 .
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As SCA(C) ' SC(C)|A0| so SCA(C) is also a Waldhausen category. We define the Γ-space ΓC by
ΓC(A) = NwSCA(C). For ease of notation, we define XC to be the functor FinSet∗ Cat defined
by A SC(C)A0 . When C is obvious from context we will omit it.

Lemma 5.2.4. For any polytope complex C,

BΓC ' K(C).

Proof. We know that both BΓC and K(C) are Ω-spectra above level 1; thus it suffices to check that
they are equivalent at level 1.

We can write

(BΓC)1 = |Nw ◦X ◦ S1| and K(C)1 = |Nw ◦ SnSC(C)|,

so we redirect our attention to the simplicial categories X ◦ S1 and [n] SnSC(C). From the
description above we can see that X ◦ S1 is the functor [n] SC{1,...,n}(C).

We have the following string of inclusions:

SC{1,...,n}(C) SC(C)n SnSC(C),

where the last inclusion maps a tuple (A1, . . . , An) to the object

A1 A1 qA2 · · · A1 q · · · qAn.

These induce a string of natural transformations

X ◦ S1 ([n] SC(C)n) ([n] SnSC(C).

That the second of these is a natural transformation is obvious, but the first requires some thinking.
Given a map A A′ ∈ FinSet∗ we have an induced functor SCA(C) SCA′(C), which extends
to a functor SC(C)|A| SC(C)|A′| by replacing the union of indexing sets by a disjoint union. This
breaks the Γ-space structure, since disjoint union is not strictly commutative, but it does not break
the simplicial structure, as the simplicial maps require only strict associativity, not commutativity.
Thus in order to make this properly simplicial we need to simply make sure that we have an
appropriately associative disjoint union. We can do this by considering the skeleton of FinSet
consisting only of sets {1, . . . , k} and defining

{1, . . . , k} q {1, . . . , `} := {1, . . . , k + `}

with {1, . . . , k} mapping into the first k elements, and {1, . . . , `} into the last `. Thus we see that
the first inclusion induces a natural transformation of functors.

We know that the first natural transformation is a levelwise equivalence of simplicial categories
from the discussion above. The second of these is an equivalence of bisimplicial sets after applying
Nw· by the proof of corollary 4.6.8. Therefore the composition induces an equivalence (BΓC)1 '
K(C)1, as desired.

It follows that an equivalent definition of the K-theory of a polytope complex is the composition

KΓ : PolyCpx ΓSp Sp

C (n+ 7→ |wSC(C)n|) B(n+ 7→ |wSC(C)n|)

G B
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In [15], Lydakis shows that the category of Γ-spaces is symmetric monoidal; with respect to this
monoidal structure, the functor B is a lax symmetric monoidal functor (see [16]). The smash
product of the Γ-spaces X and Y is defined to be the Γ-space X ∧ Y such that for any Z maps
X ∧Y Z are in natural bijection with maps X(k+)∧Y (`+) Z(k+∧ `+) which are natural in
both k+ and `+. If we could show that G is a lax symmetric monoidal functor we would conclude
that KΓ is also a lax symmetric monoidal functor.

Lemma 5.2.5. G is lax symmetric monoidal.

Proof. We need to construct a morphism G(C) ∧ G(D) G(C ∧ D). As discussed above, it is
sufficient to construct maps G(C)(k+) ∧G(D)(`+) G(C ∧ D)(k+ ∧ `+), natural in both k+ and
`+.

Let f : SC(C)×SC(D) SC(C∧D) be the functor defined in the proof of lemma 5.2.1. We can
define a functor (which by abusing notation we will also call f) SC(C)k × SC(D)` SC(C ∧ D)kl

induced by the functors

SC(C)k × SC(D)` SC(C)× SC(D) SC(C ∧ D)k`(i,j)

πi × πj f

where SC(C ∧ D)k`(i,j) is the copy of SC(C ∧ D) indexed by k(i − 1) + j in SC(C ∧ D)k`. Note that
the composition

SC(C)k ∨ SC(D)` SC(C)k × SC(D)` SC(C ∧ D)k`
f

is 0. Applying |w · | to this diagram we get

G(C)(k+) ∨G(D)(`+) G(C)(k+)×G(D)(`+) G(C ∧ D)(k+ ∧ `+),

with trivial composition, so we have an induced map

G(C)(k+) ∧G(D)(`+) G(C ∧ D)(k+ ∧ `+)

and it is easy to see from the definition of this map that it is natural in both k+ and `+, giving us
a map µC∧D : G(C) ∧G(D) G(C ∧ D). This will be exactly the monoidal structure map.

Let SΓ be the unit of the smash product of Γ-spaces; this is the functor which assigns to n+ the
discrete space of n points. The unit of the smash product of polytope complexes is the polytope
complex S, which has SC(S) ∼= FinSet∗ (where the weak equivalences are the isomorphisms).
Our unit map ε : SΓ G(S) will be the natural transformation of functors which takes a point
x ∈ n+ to the point in |wSC(C)n| represented by the object which is {}∅ everywhere but the x-th
coordinate, and which is {1}{1} on the x-th coordinate. It is easy to check that this is actually a
morphism of Γ-spaces.

It is easy to see that ε and µ satisfy the coherence axioms for a lax symmetric monoidal
functor.

Thus we have shown the following:

Proposition 5.2.6. KΓ is a symmetric monoidal functor.
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We now have two functors K,KΓ : PolyCpx Sp. We can construct a natural transformation
η : KΓ K in the following manner. For any two functors F : A B and G : A′ B we will

write F �G for the induced functor A×A′ B×B × B; we will use this notation to distinguish
this “box product” from the usual product of simplicial objects. We will write F�n for the n-ford
box product. As an added bit of notation, we define S�n to be the n-simplicial pointed set defined
by

S�ni1···in = S1
i1 ∧ · · · ∧ S

1
in ,

so that Sn = |S�n|. We can then define a functor X ◦ S�n S(n)
• SC(C) by defining the functor

ξi1···in : SC(C){1,...,i1}∧···∧{1,...,in} Si1 · · ·SinSC(C)

to take a tuple {Ai}i∈I where I = {∗, 1, . . . , i1}∧· · ·∧{∗, 1, . . . , in} to the diagram where the object
indexed by ((j1, . . . , jn) < (k1, . . . , kn)) is

k1∐
α1=j1

· · ·
kn∐

αn=jn

Aα1···αn ,

with the obvious inclusions. Here we make sure that the indexing set of the coproduct is the union
of the indexing sets (which will be disjoint by construction). The functor ξi1···in is the left Kan
extension along the functor

{1, . . . , i1} ∧ · · · ∧ {1, . . . , in} [i1]× · · · × [in],

which includes the left-hand set into the objects of the right-hand category. (This is the n-
dimensional generalization of the morphism constructed in the proof of lemma 5.2.4.) Note that
ξi1···in factors through the inclusion

Fi1 · · ·FinSC(C) Si1 · · ·SinSC(C).

Lemma 5.2.7. η : KΓ K is a symmetric monoidal natural transformation.

Proof. In this discussion, we will be computing the K-theory of a polytope complex using the F•

construction, instead of the S• construction. Because inside SC(C) we have a well-define functorial
cofiber functor that is compatible with the simplicial structure, computing the K-theories in both
of these ways are (functorially) equivalent.

We need to show that the following two diagrams commute:

KΓ(C) ∧KΓ(D) K(C) ∧K(D) S

KΓ(C ∧ D) K(C ∧ D) KΓ(S) K(S)

ηC ∧ ηD

ηC∧D ηS

The fact that the right-hand diagram commutes is simple: given that KΓ(S) = K(S) and that the
two diagonal morphisms are both ι, our chosen equivalence S QS0, it clearly commutes.

Consider the diagram on the left. As the vertical morphisms are given by the universal property
for smash products of symmetric spectra, it suffices to show that for all m and n the two morphisms
KΓ(C)m ∧KΓ(D)n K(C ∧ D)m+n given by going around the top and around the bottom of the
diagram are the same. It suffices to show that the diagram of m+ n-simplicial categories
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(XC ◦ S�m)� (XD ◦ S�n) F (m)
• SC(C)� F (n)

• SC(D) S(m)
• SC(C)� S(n)

• SC(D)

XC∧D ◦ S�(m+n) F (m+n)
• SC(C ∧ D) S(m+n)

• SC(C ∧ D)

commutes; the diagram we want can be obtained by applying |Nw · | to this one and checking that
the diagonal of the outside commutative square factors through the smash product. Note that the
right-hand square clearly commutes, so it suffices to consider the left-hand square. Consider this at
level [k1]× · · · × [km]× [`1]× · · · × [`n]. Recall that k+

0 is the pointed set k+ without the basepoint,
so it is the set {1, . . . , k}. We can write the left-hand square as[ m∏

i=1

(ki)
+
0 ×

n∏
j=1

(`j)
+
0 , SC(C)× SC(D)

] [ m∏
i=1

[ki]×
n∏
j=1

[`j ],SC(C)× SC(D)

]

[ m∏
i=1

(ki)
+
0 ×

n∏
i=1

(`j)
+
0 ,SC(C ∧ D)

] [ m∏
i=1

[ki]×
n∏
j=1

[`j ],SC(C ∧ D)

]

ξk1···km × ξ`1···`n

f

ξk1···km`1···`n

f

For this to commute, we need to show that for Ai ∈ SC(C) and Bj ∈ SC(D), we have(∐
i∈I

Ai

)
f

(∐
j∈J

Bj

)
=

∐
(i,j)∈I×J

Ai fBj .

Write Ai = {aι}ι∈Ii and Bj = {bγ}γ∈Jj ; then we can rewrite the above equation as

{aι ∧ bγ}(ι,γ)∈
∐
i∈I Ii×

∐
j∈J Jj

= {aι ∧ bγ}(ι,γ)∈
∐

(i,j)∈I×J Ii×Jj .

Thus we simply need to show that
∐
i∈I Ii ×

∐
j∈J =

∐
(i,j)∈I×J Ii × Jj . This is not necessarily the

case: consider the case where I = J = Ai = Bj = {1, 2}. However, as all of the indexing sets from
the Ai’s come from a Γ-space, we know that Ii ∩ Ii′ = ∅, and similarly for the Jj ’s. This means
that instead of disjoint unions we can take ordinary unions in the equation above; in that case, the
two sets are always equal, and we are done.

The conditions for morphisms are the same, and are checked analogously.

5.3 Examples

5.3.1 Euclidean Ring Structure

The polytope complex GEm ∧ GEn includes into the polytope complex GEm+n by writing Em+n ∼=
Em ×En and mapping a pair (Pm, Pn) to the polytope Pm ×Pn. By extending this to the vertical
and the horizontal morphisms this extends to a polytope functor Em ∧ En Em+n. We define
GE =

∨
n≥0 GEn ; then these polytope functors extend to a multiplication µE : GE ∧ GE GE . We

can also define a unit ιE : S GE by taking the polytope in S to the single 0-polytope in E0.
As a side note, note that GEm∧GEn is not a subcomplex of GEm+n , as there are families in GEm+n

which are covering families in GEm+n but not covering families in GEm ∧ GEn . The easiest way to
see this is to consider the case when m = n = 1. Consider the following family of morphisms:
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Inside GE2 this is a covering family, but inside GE1 ∧ GE1 this is not, as it cannot be written as a
finite composition of refinements in each direction. However, it can be refined to a covering family
inside GE1 ∧ GE1 by decomposing along the dotted lines:

Using this we can check that even though GEm ∧GEn is not a subcomplex of GEm+n , K(GEm ∧GEn)
is equivalent to the K-theory of the subcomplex which is the image of GEm ∧ GEn inside GEm+n .

5.3.2 Spherical Ring Structure

In the spherical geometry case, we also have polytope functors GSm ∧ GSn GSm+1+n , given in
the following manner. Consider Sn as a subset of Rn+1, and a polytope in Sn as a solid cone of
rays inside Rn+1. We have an inclusion Rn+1 × Rm+1 Rn+1+m+1. Then the polytope functor
GSm ∧ GSn GSm+1+n is given by mapping a pair of a solid cone P ⊆ Rm+1 and a solid cone
Q ⊆ Rn+1 to the solid cone P ×Q ⊆ Rm+1+n+1. (Another way of thinking about this is to include
Sm ⊆ Sm+1+n as the first m coordinates, Sn as the last n coordinates, and take the join inside
Sm+1+n of the two polytopes. We then define GS = S ∨

∨
n≥0 GSn , and we have a multiplication

µS : GS ∧ GS GS . The unit is the formal inclusion of S as the extra S factor.

5.3.3 The Burnside Category

Suppose that we have a finite group G. For finite G-sets S and T we define the polytope complex
BurnG(S, T ) to be the polytope complex with

objects diagrams of finite G-sets S
f
A

g
T , denoted (A, f, g)

morphisms vertical (resp. horizontal) morphisms are diagrams

A A

S T S T

B B

∼=

where the morphism A B is an injective G-set map (resp. an isomoprhism).
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vertical topology a collection of morphisms {(Ai, fi, gi) (A, f, g)}i∈I is a covering family if⋃
i∈I Ai = A.

The ordinary Burnside category BG is defined to have as its objects finite G-sets, and as its

morphisms S T the abelian group generated by spans S
f
A

g
T of finite G-sets under a

scissors congruence type reulation (for more on this, see, for example [14] or [10]). In fact, it is easy
to see that K0(BurnG(S, T )) = BG(S, T ). We can define the enriched Burnside category BurnG
to have the objects the finite G-sets, and morphism polytope complexes BurnG(S, T ).

The composition in BG is defined on generators by defining the composition of (A, f, g) : S T
and (B, f ′, g′) : T U to be the span (A×T B, f ◦πA, g′ ◦πB) : S U . We extend this definition
to polytope complexes by defining a polytope functor

BurnG(T,U) ∧BurnG(S, T ) BurnG(S,U)

to be the above pullback on objects, and the obvious extension on morphisms. With these definitions
BurnG is a category enriched over PolyCpx, and therefore (as the K-theory functor is symmetric
monoidal) over spectra.

5.4 Simplicial Enrichment

In the previous chapter we considered, not just polytope complexes, but simplicial polytope com-
plexes. We can clearly make the category of simplicial polytope complexes a closed symmetric
monoidal category as well, simply from the structure on polytope complexes. Given any pointed
set S (with distinguished basepoint ∗), we can construct a free polytope complex on S, denoted
FS, by defining

objects: S,

vertical morphisms: the morphisms ∗ s for all s ∈ S,

horizontal morphisms: the trivial morphisms, and

topology: the discrete topology.

It is easy to check that F is a functor Sets∗ PolyCpx. Note that F has a right adjoint, the
forgetful functor U that takes a polytope complex to its set of objects.

Lemma 5.4.1. The adjuction F : Sets∗ � PolyCpx : U is an adjunction of strict monoidal
functors.

Proof. In order to check that F and U are adjoints we will construct a unit and a counit. Note that
UF is the identity functor, so our unit will be the identity natural transformation. The counit,
ε : FU 1PolyCpx will be the morphism which is the identity everywhere. Since FUC is naturally
a subcomplex of C this will be well-defined. It is easy to check that these satisfy the conditions to
make F left adjoint to U .

This is clear directly from the definitions of ∧ in pointed sets and PolyCpx. The only important
thing to note is that the smash product of two discrete topologies is also discrete.

Pick a weak equivalence ι : S0 K(S). Note that given any pointed set S we have a weak
equivalence
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Σ∞S
∨
S\∗

S0
∨
S\∗

K(S) K
( ∨
S\∗

S
)

K(FS)
∼= ι∼

∼= ∼=

Thus, up to weak equivalence, K ◦ F ' Σ∞. Considering pointed simplicial sets and simplicial
polytoe complexes, we see that the diagram

sSets∗ sPolyCpx

Sp

F

Σ∞ K

also commutes up to natural weak equivalence, which we will call ι∗ . (Here we are using the fact
that hocolim∆op QS0Xn = Σ∞X•.) We will use the functor F to induce a simplicial structure on
sPolyCpx.

In particular, we will follow lemma II.2.4 in [8].

Lemma 5.4.2. The functor · ⊗ · : sPolyCpx× sSets sPolyCpx given by

C• ⊗K = C• ∧ F (K+)

makes sPolyCpx into a simplicial category.

Proof. We need to check the three conditions for the functor. First we want to show that for a fixed
K ∈ sSets the functor · ⊗K has a right adjoint. We know, however, that for simplicial polytope
complexes C• and D• we have

Hom(C• ⊗K,D•) ∼= Hom(C• ∧ F (K+),D•) ∼= Hom(C•,DF (K+)
• )

so the functor D DF (K+) is clearly a right adjoint to · ⊗ K. Note that for a simplicial set
K and simplicial polytope complex C• we can now define two different mapping objects CK• : the
mapping object defined through the simplicial structure, and the internal mapping object defined
from the monoidal structure on sPolyCpx. The above formula shows that they agree, so we have
a well-defined notion of mapping object.

Now we want to check that the functor C• ⊗ · commutes with arbitary colimits and A⊗ ∗ ∼= A.
The second part is clear, since F (∗) ∼= S, the unit of the monoidal structure. To prove the first part
we will show that C• ⊗ · is a left adjoint, which means that it obviously commutes with all colimits.
For a fixed C• ∈ sPolyCpx we have that C• ⊗ · is the composition

sSets sSets∗ sPolyCpx sPolyCpx.
F C• ∧ ·

It suffices to show that this is a left adjoint levelwise. The first of these is clearly a left adjoint;
the second is an adjoint by lemma 5.4.1. The third is a left adjoint because PolyCpx is a closed
symmetric monoidal category. Thus C• ⊗ · commutes with all colimits, as desired.

Lastly we want to show that for fixed simplicial sets K,L we have a natural isomorphism
C• ⊗ (K × L) (C• ⊗ K) ⊗ L. As before, it suffices to show that for each n we have a natural
isomorphism Cn ⊗ (Kn ×Ln) (Cn ⊗Kn)⊗Ln. It is easy to check this from the definition. .
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We can now define a simplicial enrichment for PolyCpx by defining

Hom(C•,D•)n = Hom(C• ⊗∆n,D•).

Note that for all simplicial polytope complexes C• and simplicial sets L we have a natural transfor-
mation

ηC•,L : K(C•)⊗ L K(C• ⊗ L)

given by the composition

K(C•) ∧ Σ∞+ L K(C•) ∧K(F (L+)) K(C• ∧ F (L+))
1 ∧ (ι∗)L µ

Note that η is associative, in the sense that the following diagram, and the corresponding diagram
with the isomorphisms inverted, commutes for all simplicial sets L and L′:

(K(C•)⊗ L)⊗ L′ K(C• ⊗ L)⊗ L′

K(C•)⊗ (L× L′) K(C• ⊗ (L× L′)) K((C• ⊗ L)⊗ L′)

η

∼=

η ∼=

η

Using this we can now show that not only is K lax monoidal, but it is compatible with the simplicial
enrichment.

Proposition 5.4.3. K : sPolyCpx Sp is a simplicially enriched functor.

Proof. We need to show that K gives a map Hom(C•,D•) Hom(K(C•),K(D•)). For each n ≥ 0
we have a map

ω : Hom(C• ∧ F (∆n
+),D•)

K
Hom(K(C• ∧ F (∆n

+)),K(D•))
◦ηC,∆n

Hom(K(C•) ∧ Σ∞+ ∆n,K(D•)).

As all of the simplicial maps interact only with the ∆n in the equations, and all of the morphisms
are natural in all three variables, we see that this induces a map of simplicial sets, as desired.

It remains to check that this map is coherent with composition and identities. In order to check
composition we need to check that for any n and any C•, D• and E• the diagram

Hom(D• ⊗∆n, E•)×Hom(C• ⊗∆n,D•) Hom(C• ⊗∆n, E•)

Hom(K(D•)⊗∆n,K(E•))×Hom(K(C•)⊗∆n,K(D•)) Hom(K(C•)⊗∆n,K(E•))

◦

ω

◦

ω × ω

commutes. In particular, (after transposing the diagram) we need that for any polytope functor
F : C• ⊗∆n D•, the outside of the following diagram commutes:

K(C•)⊗∆n K(C•)⊗ (∆n ×∆n) (K(C•)⊗∆n)⊗∆n K(D•)⊗∆n

K(C• ⊗∆n) K(C• ⊗ (∆n ×∆n)) K((C• ⊗∆n)⊗∆n) K(D• ⊗∆n)

η

K(1⊗∆) K(F ⊗ 1)

η

1⊗∆ K(F )η ⊗ 1

η ◦ ηη
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Going around the top of this diagram corresponds to going around the top of the Hom-diagram,
and going around the bottom corresponds to going around the bottom. The left- and right-hand
squares commute because η is a natural transformation. The middle square commutes because η
is associative.
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